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Executive Summary 

Winter weather poses negative impacts on the safety, mobility, and economic 

productivity of surface transportation systems. Snow and ice on roads reduce friction and 

visibility, contribute to accidents and injuries, and decrease traffic speed and roadway capacity. 

Connected vehicle (CV) technology is well-suited to address multiple safety and mobility 

impacts of winter weather. Accurate and real-time road weather information is essential for road 

maintenance decision-making and a to provide high level of service to road users.  

The objectives of this project were to investigate how CV data could be integrated with 

data from road weather information system (RWIS) stations and other existing infrastructure, 

and how the integrated data could be utilized to improve decision-making for highway 

operations and to enhance traveler information during inclement winter weather events. Note that 

during the course of the project, some unforeseen difficulties occurred, preventing the research 

team from pilot testing the CV solution on department of transportation (DOT) vehicles or 

during winter weather. Instead, the research team focused on the development of a road surface 

friction analysis and visualization platform. This PacTrans project laid the foundation to address 

the innovative use of CV technologies to improve winter travel mobility. Future phases of this 

project may expand the scope into more road weather-related mobility applications of CV 

technologies. 

Part I of this project focused on understanding the current practices and needs related to 

using CV technology to improve winter travel, followed by the development of a vision. A 

nationwide survey of maintenance departments conducted as part of this work assessed the 

application of CV technologies to improve safety and mobility during the winter. All respondents 

had positive attitudes toward the potential of using CV technology to improve winter travel, but 

they also had some concerns about system performance in poor weather, vehicle and system 

security, and increased driver distraction. This work presents the potential application of CV 

technology under operational scenarios to improve winter travel. Maintenance departments 

would use mobile road weather-related, route-specific data to determine maintenance strategies 

in advance; subsequently, they would provide the travel alerts and advisories to road users. 

Part II of this project focused on the development of a road surface friction analysis and 

visualization platform. This methodology was based on time-aware, recurrent, gated neural 

networks. RCM-411 friction sensing data were selected as the model input. To evaluate the 



 

xvi 

predictive effectiveness of the proposed method, several baseline prediction and imputation 

models were employed for comparison purposes. In addition to evaluating prediction 

performance, the impact of missing rates, learning efficiency, and learned decay rates were also 

analyzed. This study was meant to improve the effectiveness of prediction models in handling 

missing values to mitigate the impacts of road surface conditions on road traffic safety and 

mobility. The models could also be used to visualize road surface friction on the DRIVE Net 

platform to show results intuitively.  

Part III of this project focused on simulating operational enhancements to highways 

through the deployment of vehicle communication technology during inclement weather. While 

many studies have already looked at ways to mitigate congestion during adverse weather, no 

study has yet demonstrated how the CV technology can be applied to better manage traffic 

network during such an event. The potential traffic performance benefits associated with the 

emergence of vehicle communication technology, and the lack of tools to evaluate those benefits, 

were the impetus behind this project. The Oregon State University team developed a modified 

Intelligent Driver Model (IDM) to incorporate the effects of CVs in a mixed traffic scenario. The 

developed methodology was implemented into a simulation framework, and detailed analysis 

was conducted to evaluate how CV data can improve vehicle movement during adverse weather. 

Results showed that a high market penetration of CV (60 percent) produced less speed 

perturbation along the roadway, leading to stable traffic movement. 
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1. Background 

Winter weather negatively affects the safety, mobility, and economic productivity of road 

transportation. Snow and ice on roads reduce friction and visibility, leading to accidents, injuries, 

and death. Nationally, snowy, slushy, or icy pavement conditions are present in about 27 percent 

of weather-related crashes, or over 300,000 crashes annually (FHWA 2018a). Many studies have 

demonstrated increased accidents and fatalities during winter in general and icy/snowy 

conditions in particular, with some noting increased severity at the beginning of winter 

(Andersson 2010, Saha 2016, Dey 2015). However, drivers actually tend to drive slower during 

winter weather, reducing crash severity, and become more focused and conservative during the 

winter season (Pisano 2008). The consequences of slower, safer driving during winter weather 

are reduced mobility and economic impacts. The mobility impacts of winter weather on the road 

transportation system include decreased traffic speed, flow, volume, and capacity and increased 

car-following distances, travel time, and start-up delays (Pisano 2017, Strong 2010). The 

economic impacts of winter weather range from indirect costs associated with crashes, traveler 

delays, and the environmental impacts of winter road maintenance, to the direct costs of plowing, 

material applications, and consequent corrosion impacts to infrastructure and vehicles. 

Winter road maintenance activities are necessary and can significantly reduce the 

deleterious impacts of winter weather. One major benefit item associated with winter road 

maintenance operations is improved mobility, which has been the subject of many studies 

(Shahdah 2009, Shahdah 2010). Another major benefit associated with winter road maintenance 

operations is safety of the traveling public. For Washington state, “crash frequency in the 

presence of snow was five times higher than the rate under clear conditions.” A comparison of 

crash rates between winter and summer revealed that January had 12 times as many accidents as 

July (Goodwin 2003). In recent years, there has been a transition from mostly deicing to anti-

icing wherever suitable (O’Keefe 2005, Cui 2015). As a proactive approach, anti-icing hinges on 

reliable weather forecasts and nowcasts for its success. Therefore, accurate and timely road 

weather information is essential for winter road maintenance. 

Road weather information system (RWIS) stations at fixed locations and manual 

patrolling are widely adopted by departments of transportation (DOTs) for understanding current 

weather conditions and for forecasting winter weather and making pavement predictions for 

optimal winter road maintenance activities (plowing, deicing, anti-icing, etc.). However, it must 
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be noted that pointwise RWIS data are inadequate for predicting surface conditions along the 

road network (Drobot 2010, Shi 2007). Therefore, there is an interest in “filling in the gaps” 

between RWIS stations by using mobile sensors mounted onto patrol vehicles and plows (Nordin 

2013).  

The broad availability of road weather data from an immense fleet of mobile sources 

could vastly improve the ability to detect and forecast road weather and pavement conditions 

(Hill 2013). Connected vehicle (CV) technologies can provide connectivity and communication 

between data from mobile sensors such as vehicle probes and data from fixed RWIS stations 

(Dey 2015). The combination of vehicle probe data and RWIS data may have the potential to 

provide meteorological and transportation agencies with a highly detailed temporal and spatial 

data set of road and atmospheric conditions (Fehr 2015). Road weather data collection could be 

improved by utilizing weather sensors in CVs and by transferring collected data through vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, which has been 

demonstrated in the European WiSafeCar project (Sukuvaara 2012). The Connected Vehicle 

Reference Implementation Architecture (CVRIA) developed by FHWA (Fehr 2015) has defined 

how CVs will contribute to road weather management data collection and information 

dissemination. The enhanced road weather condition information could be communicated to the 

general public to allow them to slow down, choose a different route, or stay home in light of 

inclement weather. 

In this context, there is an urgent need to identify and demonstrate the operational 

scenarios in which CV technology can be employed to improve winter road surface condition 

monitoring and traveler information and to enhance the decision-making of winter maintenance 

operations. 

The objectives of this project were to investigate how CV data could be integrated with 

data from RWIS stations and other existing infrastructure, and how the integrated data could be 

utilized to improve decision-making for highway operations and to enhance traveler information 

during inclement winter weather events. The main approach for this project was formulated as 

follows:  

1. Actively engage regional agencies and industry partners/stakeholders to develop 

operational scenarios for CVs to improve winter road operations and traveler 

information service;  
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2. Demonstrate the proof-of-concept of selected operational solutions at the UW test-

bed;  

3. Develop the CV solution for winter road surface condition monitoring and traveler 

information;  

4. Pilot test the CV solution on selected road segments in the Pacific Northwest, conduct 

preliminary analyses, and make recommendations for implementation.  

Note that during the course of the project, some unforeseen difficulties occurred, 

preventing the research team from pilot testing the CV solution on DOT vehicles or during 

winter weather. Instead, the research team focused on the development of a road surface friction 

analysis and visualization platform. This PacTrans project laid the foundation to address the 

innovative use of CV technologies to improve winter travel mobility. Future phases of this 

project may expand the scope into more road weather-related mobility applications of CV 

technologies. 
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2. A Review of Relevant Literature 

Numerous vehicle-based technologies have been developed to achieve improvements in 

winter maintenance efficiency, mobility, and safety (Ye 2012). Among them, automatic vehicle 

location (AVL) is conceptually most integrated with other technologies, especially surface 

temperature sensors, freezing point and ice-presence detection systems, snowplow blade position 

sensors, and application rate sensors. Smart snowplows featuring AVL and other sensors have 

been increasingly used as mobile data collection platforms for enhanced winter road maintenance 

(WRM) operations. If these sensors are working properly, then both vehicle operators and 

maintenance managers can have more precise information about current roadway conditions, 

resulting in better winter maintenance decisions.  

Integration is also a key consideration for the maintenance decision support system 

(MDSS). MDSS is a software application that integrates information from a variety of sources, 

such as RWIS and weather service forecasts, to provide recommendations for road treatment. 

With many mobile data collection technologies being introduced and integrated into an AVL 

platform (Ye 2009), MDSS helps improve winter maintenance decisions, and its benefits 

significantly outweigh its costs. 

Recent advances in mobile sensing and data collection technologies have provided new 

opportunities for road weather management strategies such as Weather-Savvy Roads (FHWA 

2019a). The Weather-Savvy Roads program has been developed by the FHWA through round 

four of Every Day Counts (EDC-4) and provides two distinct strategies that allow state and local 

agencies to be proactive in managing the surface transportation system in advance of and during 

adverse weather events. The Pathfinder and Integrating Mobile Observations (IMO) strategies 

can help agencies manage road systems and inform travelers during heavy rain, snow, and other 

weather events, all of which can have noteworthy impacts on the safety, mobility, and 

productivity of road users (FHWA 2019b). 

CV data could be utilized to enhance existing intelligent transportation system (ITS) 

strategies by supplementing or complementing current roadway sensing components, thereby 

improving the effectiveness of the system operations to react to changing road weather 

conditions. 

A summary of existing research of CV technology applications for winter travel is shown 

in table 2-1.  
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Table 2-1. Summary of relevant CV technology for winter travel 

Categories  CV 
Application 

Results  Ref 

Weather 
and road 
condition 
assessment  

Slippery road 
condition 
assessment  

Proposed data from weather stations and 
friction data from fleets of connected cars can 
be used to predict the slippery road conditions.  

(Panahandeh 
2017) 

 Road 
pavement 
condition 
estimation 

Proposed using crowdsourcing with numerous 
probe vehicles and sensors installed on 
vehicles and smartphones for collecting 
pavement condition information.  

(Dennis 2014) 

 Slippery road 
detection and 
evaluation  

Proposed Droid smartphone app (DataProbe) 
to collect data to estimate slippery road 
condition. 

(Robinson 
2012) 

 Winter road 
condition 
monitoring 

Demonstrated a smart phone based system was 
capable of providing reliable results in 
comparison with the current method of patrol 
reporting for route-level monitoring of winter 
road conditions. 

(Linton 2015) 

 Road surface 
condition 
assessment 

Demonstrated vehicle-based image data 
combined with RWIS data and machine-
learning models to improve accuracy of 
smartphone-based road surface condition 

(Linton 2016) 

 Road 
condition 
imagery 

Iowa DOT uses plow dashboard-mounted 
mobile phones and an app to take images of 
road surface and provides images to 
maintenance managers and the general public 
on a web service (Track a Plow). 

(Hirt 2017) 

 Road 
weather and 
condition 

The FHWA Every Day Counts program 
Integrating Mobile Observations (IMO) is 
working with 23 state DOTs. IMO involves 
collecting weather and road condition data 
from government fleet vehicles, such as 
snowplows. The focus is on supplemental data 
from ancillary sensors installed on the 
vehicles, such as pavement temperature 
sensors, and includes native vehicle data such 
as windshield wiper status and anti-lock brake 
or traction control system activation. The data 
provides maintenance managers with an 
extremely detailed view of the weather and 
road conditions along the road network.  

(Pisano 2017) 

Road 
weather 
advisories 

Integrating 
Snowplow 
Camera 
Images into 

MnDOT installed network video dash cameras 
and ceiling-mounted cameras on 226 
snowplows. The cameras were integrated with 
the onboard MDC/AVL equipment and 

(Hirt 2017) 
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Categories  CV 
Application 

Results  Ref 

for 
Travelers  

Traveler 
Information 
System 

automatically captured snapshots of road 
conditions during plowing. Images were sent 
to MnDOT’s server and then imported in near-
real-time to the MnDOT travel information 
website and MnDOT 511 mobile app for up-
to-the-minute use by the traveling public. 

 Using Clarus 
Data for 
Disseminatin
g Winter 
Road 
Weather 
Advisories 
and Alerts 

New York State 511 system combines the road 
weather information from Clarus and other 
weather data sources to generate various 
weather alerts pertaining to snow, ice, winds, 
and other severe weather conditions, and posts 
these alerts on the 511NY website.  
Western States One-Stop Shop project creates 
a user-friendly website that integrates and 
displays weather and road condition 
information for a four-state region from 
Clarus, CCTV, National Weather Service 
(NWS) and other data. 

(Alfelor 2012) 

 The Road 
Weather 
Management 
Program 

IntelliDrive's Dynamic Mobility Applications 
capitalize on vehicle-infrastructure 
connectivity by using data from vehicle probes 
and other real-time data sources, and enable 
TMCs to manage mobility between and across 
modes more effectively while providing 
information to travelers to support dynamic 
decision making. 

(Alfelor 2011) 

CV 
technology 

Rural 
Variable 
Speed Limit 
Corridors 

A research vehicle was equipped with 
connected vehicle technology and vehicle data 
were collected during storm events along a 
rural VSL corridor. Also tested NCAR’s 
Pikalert system and suitability of CV data for 
VSL decision-making algorithms.  

(Hammit 2015) 

 WYDOT CV 
Pilot 
Deployment 
Program 

The Wyoming pilot will specifically use V2V 
and V2I technology to reduce the impact of 
adverse weather on truck travel in the I-80 
corridor in Wyoming. 

(Gopalakrishna 
2015) 

 Weather 
Responsive 
Traffic 
Management 

FHWA, Michigan DOT, Minnesota DOT, and 
Nevada DOT joined to work under the 
Integrated Mobile Observations (IMO) project 
and develop an architecture that provides 
efficient Weather Responsive Traffic 
Management (WRTM) strategies and 
advanced data collection and analysis. 

(Belzowski 
2016) 
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Although many researchers and transportation communities have worked to explore how 

to capitalize on CV technologies to enhance safety and mobility, few studies have been 

specifically geared toward improved winter travel. The Wyoming Department of Transportation 

(WYDOT) CV Pilot deployment program presented concept of operations for seven applications 

focusing on travel alerts and advisories regarding inclement weather, emergency situations, and 

work zones, but not referring to winter travel such as winter road maintenance (Gopalakrishna 

2015). Winter-specific topic areas worth noting are winter road maintenance and road weather 

advisories/warnings for travelers. Hence, this work focused on those two significant aspects. 

2.1. National Survey of Road Maintenance Departments  

This work entailed the design of a survey to gather information from winter roadway 

maintenance professionals on their relevant experience and insights. The objective of the survey 

was to explore the use of CV technology applications for improved winter travel, including CV 

application situations, needs, and potential uses for winter travel. The survey questionnaire was 

distributed online to several state DOTs and maintenance departments. Meanwhile, the research 

team brought this survey to attendees of the 2018 Pacific Northwest Snow Fighters Conference. 

In total, the research team collected 51 effective responses, including 30 paper-based survey and 

21 online responses. The respondents were basically distributed over the entire Northern areas 

(figure 2-1). 
 

 
Figure 2-1. Distribution of survey respondents 
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Agency website, 511, and dynamic message signs were most used by these state and local 

DOTs to provide road weather information for public. These state and local DOTs mainly used 

road a weather information system (RWIS) (88.24 percent) and manual patrols (84.31 percent) to 

collect road weather data. A maintenance decision support system (MDSS) was rarely adopted 

(29.41 percent) (figure 2-2). They reported that most road weather data could be gathered easily 

by present methods except a few road weather parameters such as friction and solar radiation. In 

addition, the majority of respondents thought they could gather these road weather data in near 

real time by RWIS and cameras. However, the present methods have many limitations, and cost 

is the greatest problem. Furthermore, for RWIS and fixed cameras, spatial resolution is also a 

great deficiency. For manual patrols, time and labor create high barriers.  

 

 
Figure 2-2. Use of data collection methods 

 

Most state DOTs reporting having snowplows that had automatic vehicle location (AVL) 

and GPS. Basically, the snowplow could report location and monitor air temperature and surface 

temperature. Few snowplows could report pavement condition, and only one state (Iowa DOT) 

reported having snowplows with dash cameras mounted on them. The majority of respondents 

thought the data from snowplows were useful for improving winter road maintenance and travel 

information. However, the integration of smart snowplow data with RWIS data was not easy. 

Although most state DOTs didn’t yet have infrastructure to collect data from CVs, they 

had very positive attitudes toward CV applications for enhancing winter maintenance operations 

and traveler information (figure 2-3) They thought that the combination of RWIS data and 

personal CV data or mobile data collected by plows would be beneficial for improving winter 

maintenance strategies and travel information, particularly the spatial resolution of near real-time 

road condition reporting and traveler information advisory (figure 2-4). Nevertheless, they 
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thought it was difficult to integrate CV data into RWIS (figure 2-5). Moreover, they were still 

concerned about the application of CV technologies for winter road maintenance and traveler 

information. The largest cause of concern was system performance in poor weather (44.19 

percent very concerned and 30.23 percent moderately concerned). Vehicle security (from 

hackers) (30.23 percent very concerned and 32.56 percent moderately concerned) and system 

security (from hackers) (31.82 percent very concerned and 34.09 percent moderately concerned) 

were also notable. Also worrying were increased distraction and legal liabilities for drivers, as 

well as drivers’ overreliance on technology (figure 2-6).  
 

 
Figure 2-3. Degree of expected usefulness of CV data 

 

 
Figure 2-4. The beneficial scenarios of supplemental CV data 
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Figure 2-5.  Degree of ease in integrating CV data into RWIS 

 

 
Figure 2-6. Concerns about CV application 
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potential but suggested that researchers should focus on CV data collection, integration and 

quality, and communication, as well as applications in rural road networks when CV 

technologies are implemented in actual road network environments. 
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3. A Vision of CV Application for Improving Winter Travel 

3.1. Description of the Concept for CV Application   

State and local transportation departments are required to process huge amounts of of 

road weather information and to handle multiple tasks when facing winter weather events. 

Whether for maintenance decision-making or traveler information distribution, gathering 

accurate and real-time road weather data is the key. RWISs are extremely useful for collecting 

road weather data, including pavement temperature, pavement condition, wind speed, 

precipitation amount, and more. However, fixed RWISs only gather point-specific road weather 

data. Route-specified road weather data, which are more important for identifying road weather 

conditions on a network, are hardly collected. 

The application of CV technologies for improving winter travel concept will change this 

situation by providing expanded road weather data through sensors available on connected 

vehicles. Mobile road weather-related data and traffic flow data will be collected from CV 

technology-enabled snowplows, maintenance trucks, city fleet vehicles, and private vehicles 

through CAN-Bus, AVL, and sensors mounted on the vehicles. These route-specific data will be 

transmitted to a remote data analytics center through various wireless communication 

technologies. They will then be combined with point data obtained from an RWIS and traffic 

cameras. After data processing and analysis, real-time road segment weather information will 

become available to the road maintenance department and traffic management center. Advanced 

maintenance strategies, such as what material to put on which roads and how much of it, will be 

obtained by the maintenance decision-making support system on the basis of the route-specified 

road weather information. Such strategies will be communicated to snowplow operators and 

drivers of maintenance trucks through existing wireless networks, e.g., dedicated short-range 

communication (DSRC) or cellular networks. Meanwhile, road segment weather information 

will be aggregated and transferred to the traffic management center, which will further process 

those data using advanced algorithms/models and then generate and transmit short-term travel 

alerts and medium/long-term travel advisories to road users through a smartphone app, websites, 

and social media. These alerts and advisories will enable road users to select better trip behavior 

(trip times, trip modes, trip routes, etc.), which would be impossible without the proposed CV-

based solution. Figure 3-1 provides a schematic of how the application could operate.  
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Figure 3-1. Schematic of CV application in winter travel 
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Connected vehicles. The connected vehicles involved in the system are mainly 

snowplows, maintenance trucks, city fleet vehicles, and voluntary private vehicles that contribute 

data from their controller area network bus (CAN-Bus), as well as the road weather sensors 

mounted on them. As the size of raw sensor data tends to be very large, these data need to be pre-

processed locally on individual vehicles before they are transmitted (Chen 2019). In fact, the on-

board units (OBU) available on connected vehicles can process these data in real time and 

transmit the processed data to nearby vehicles and/or roadside units (Su 2017). As these vehicles 

move on public roads, continuous data (or a stream of data) are generated, providing a more 

comprehensive view of the monitored road segments. The information obtained on connected 

vehicles can be categorized into two groups:  

• Data collected from CAN-Bus and GPS/AVL: average vehicle speeds, location, 

automated braking system (ABS) activation events, vehicle stability, traction control 

activation events, windshield wiper blade speed, headlight status and other basic safe 

messages. 

• Data collected by external road weather sensors mounted on vehicles: road surface 

condition, coefficient of friction, water layer thickness, and surface temperature. 

RWIS. Road weather information systems are an aggregation of advanced sensors and 

communication technologies designed to gather weather information (Kwon 2014). They are 

mainly mounted along a road at a fixed location, and they only obtain road weather data for those 

particular points, including air temperature, barometric pressure, dew point, pavement 

temperature, surface condition, wind speed, and precipitation.  

Other equipment. Other equipment (e.g., cameras and sensors) that is deployed on the 

road for different purposes can be leveraged to observe road weather conditions or traffic 

conditions at the location where the equipment is installed. Through advanced image processing 

algorithms, it is possible to derive the current weather condition. By counting the number of 

vehicles passing through a certain location, the current traffic volume, speed, and condition can 

be estimated as well. 

Roadside units. Roadside units are deployed along roads to facilitate the wireless 

communication and data transmission of connected vehicles. These include infrastructure that 

can receive data from and transmit them to connected vehicles, other infrastructure, and servers 

by using dedicated short range communication. Roadside units are also a good candidate for 
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implementing data aggregation and data processing algorithms (Chen 2019), which eliminate the 

burden of transmitting all data to a remote data center. As data are processed on roadside units 

that are close to the data generator, the system’s latency is significantly reduced. In addition, less 

network bandwidth is required, and better data privacy protection is offered. 

3.2.2.  Information Processing System 

The information processing subsystem is a unit that accepts data from connected 

vehicles, RWIS, and other detectors; analyzes and processes data; and then outputs route-

specified road weather information to road maintenance departments and traffic management 

centers. Data cleansing and data aggregation are carried out on this unit. It includes the following 

modules. 

Road weather data processing module. This module handles mobile data gathered from 

the CAN-Bus and external sensors on connected vehicles. The data are timestamped, ingested, 

quality checked, and matched (aggregated) to a road segment using GPS location (Young 2019). 

As massive amounts of data are processed by this module, efficient data processing and 

aggregation mechanisms are employed. Data from other sources such as RWIS and other 

detectors are also aggregated to corresponding road segments.  

Road weather risk assessment module. This module uses some algorithms/models to 

determine the risk of each road segment on the basis of data provided by the road weather data 

processing module. For example, precipitation is forecasted on the basis of precipitation type, 

precipitation density, and air temperature, as well as vehicle-based data (wiper blade speed, 

travel speed, headlight status). Road surface condition is estimated on the basis of precipitation 

outputs, pavement temperature, surface condition reported from RWIS, and ABS/traction 

activation information. It can be classified into bare, partly snow covered, and fully snow 

covered. Visibility is also assessed on the basis of precipitation outputs, humility, headlight 

status, vehicle speed, and RWIS visibility.   

Road weather alert module. This module transforms the outputs generated from the 

road weather risk assessment module to actual travel alerts or advisories. Particular travelers may 

be more concerned with the overall road weather condition than conditions of each section of the 

road. Hence, in this module, the overall road weather condition is obtained to generate an alert or 

travel advisory for individual travelers.    
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3.2.3. Information Communication System 

Connected vehicle data are communicated to roadside units via DSRC or cellular vehicle-

to-everything (C-V2X) (Yang 2010). The data are transferred to data severs through the existing 

wireless network, e.g., General Packet Radio Service (GPRS). 

3.2.4. Information Distribution System 

Various user groups can access the travel alerts and advisories through a series of 

interfaces, such as 511, smartphone apps, websites, in-vehicle displays, dynamic message signs 

(DMS), and social media. In addition, snowplow operators and drivers of maintenance trucks can 

receive maintenance strategies through the driver-vehicle interface. Users (or information 

consumers) can communicate with information providers through a publisher and subscriber 

mode (Yang 2016). In this system, users select and subscribe their interested topics, e.g., road 

condition information; the server then automatically pushes newly generated information to 

corresponding users. As the information is contributed and consumed by different users, trust 

relationships between vehicles can be established, which facilitate the efficient delivery of more 

relevant information to users. 

3.3. Operation Flow of the CV Application 

The operation flows of the CV application for improving winter travel are as follows: 

Step 1: Connected vehicles collect road weather data and broadcast those data to other 

vehicles equipped with-vehicle devices within the V2V communication area and to roadside 

units by using DSRC. Then the data are transferred to a server. 

Step 2: Wireless or wired communications are sent from the RWIS, cameras, and other 

sensors to the server. 

Step 3: Algorithms/models in the server process the data. 

Step 4: The server ingests the data, executes a quality check, and generates route-

specified road weather information, and then transfers outputs to the traffic management center 

and road maintenance department.  

Step 5: The route-specified road weather information is input to a maintenance decision-

making support system to generate optimal winter maintenance strategies on the basis of some 

forecast algorithms/models. And then, the optimal maintenance strategies are disseminated to an 

in-vehicle display in snowplow and maintenance trucks. Then the operators of snowplow and 

maintenance trucks implement the actions.  
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Step 6: Travel alerts and advisories are generated by some algorithms/models in the 

traffic management center on the basis of the route-specified road weather information and are 

distributed to road users such as passengers, drivers, pedestrians and cyclists through an 

information distribution system. 

3.4. Operational Assumptions and Constraints 

The effectiveness of this application is based on the availability of CV road weather data. 

That means that sufficient snowplows, maintenance trucks, city fleet vehicles, and private cars 

are equipped with sufficient onboard or external equipment. Appropriate roadside units are also 

required. Additional research is needed to identify the required levels of CV penetration and the 

appropriate spatial resolution of the roadside units. Finally, this application supposes road 

maintenance departments and traffic management departments would like to deploy connected 

vehicle devices and other external sensors into the vehicles.   

Server data processing requires additional research to improve algorithm precision. Poor 

quality data or poorly functioning algorithms will yield inadequate route-specific road weather 

information and only hinder decision support for road maintenance personnel. As stated, the 

concept assumes the development of new algorithms to quickly analyze the road weather data to 

produce short-time travel alerts and medium- and long term advisories for road users. Users can 

access the advisories and alerts through a variety of means, including public websites, phone 

hotlines, and smartphone apps.  

The development of suitable interfaces will be required to adapt the existing systems. 

Lack of training and knowledge for various involved personnel will also result in limited use of 

CV road weather information.   

Regarding deployment coverage, an adequately dense network of roadside units with 

appropriate geographic coverage is required to collect connected vehicle road weather data. This 

is especially important in areas of complex terrain or where information on short roadway 

segments is desired. 

3.5. Analysis of the Application of CV Technologies for Improving Winter Travel 

3.5.1. Benefits  

The improvements expected from implementing the proposed CV application mainly 

focus on the accuracy and timeliness of road weather data from CV technologies in comparison 
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to existing road weather data acquisition methods. The anticipated advantages include the 

following. 

Sharing advanced road weather information with drivers, passengers, pedestrians, and 

cyclists will enable road users to make better trip plans, such as selecting trip modes, trip times, 

trip routes, or cancelling trips to improve mobility and safety. A travel survey on winter weather 

events, organized by the Utah DOT and National Weather Service (NWS), showed that 83 

percent of respondents gathered information from multiple sources and 66 percent individuals 

changed their trip plans, such as changing trip time (62 percent), trip route (26 percent), not 

traveling (13 percent), or using transit (6 percent). Travelers who adopt appropriate measures on 

the basis of the received information will probably experience safer trips and overall improved 

mobility (FHWA 2018b). Similar results were also found in an investigation of the provision of 

winter snowstorm information to road users (Takechi 2012).  

Generating accurate, location-specific, real-time information about weather and road 

conditions for maintenance departments, in combination with maintenance decision-making 

support systems, will produce better maintenance strategies and reduce materials and cost. A 

case study by the Utah DOT with its nationally unique Weather Operations showed that 

improved weather information could reduce winter maintenance costs and enhance the level of 

service of the roadway system (Drobot 2009). Moreover, according to an analysis of the MDSS 

of the New Hampshire DOT, total resource consumption was reduced by 15 percent, saving 

about $1.18 million annually (Strong 2008). 

Enhancing the efficiency of maintenance departments can be accomplished by improving 

reporting and saving time spent relaying information. The results of a benefit-cost analysis of 

MDSS showed that the labor and equipment costs were expected to be reduced with reduced 

materials usage (Ye 2009). It is estimated that the Michigan DOT saved $680,000 annually 

through staff time saved by automatic system reporting (FHWA 2018b). 

3.5.2. Limitations and Challenges   

It will be necessary to increase the density of road units and the market penetration (MP) 

of connected vehicles equipped with onboard equipment and additional sensors by encouraging 

more private cars engaged in the CV network to gather mobile data, which will not only assist 

maintenance departments in obtaining sufficient road weather data to generate more accurate 
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information on road weather and traffic conditions, but will also dispel concerns about 

interacting with non-connected vehicles.  

It will be critical to improve server capabilities and performance to be able to handle the 

data processing requirements and to develop appropriate algorithms to transform raw connected 

vehicle data and other road weather and traffic data into timely and actionable information. In 

order to address the heterogeneity of the data format, reporting intervals, transmission rates, and 

more, special and improved software modules will be required to improve data processing. The 

vehicle data translator (VDT) (Drobot 2011), developed by the National Center for Atmospheric 

Research (NCAR) in collaboration with the U.S. Department of Transportation, can be used to 

ingest, parse, process, and quality check mobile data along with ancillary weather data. 

Moreover, the Digital Roadway Interactive Visualization and Evaluation Network (DRIVE Net) 

(Ma 2011) provides a practical method for facilitating data retrieval and integration to enhance 

data usability.  

It will be important to enhance the user interface to distribute the actionable information 

to connected vehicle drivers conveniently, without distracting drivers. 

It will be important to improve network transmission encryption technology, firewall 

technology, and other security means to prevent hacking attacks and to protect the vehicles’ 

privacy. 
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4. Conclusions 

This work provided the current state-of-the-art of CV technology for winter road 

maintenance and traveler information, the results of a CV application survey, and development 

of a Concept of Operations for improving winter road maintenance and travel advisories. The 

significant findings include the following:  

Winter road condition assessments using CV technology, particularly AVL and 

automated plow-mounted cameras, have been demonstrated and will likely be more widely 

implemented by state DOTs for two purposes: improving winter road maintenance decision-

making and providing traveler information and advisories. 

Special CV applications for winter travel have undergone limited development and pilot 

testing. 

State DOTs and maintenance departments generally have positive attitudes toward the 

potential of CV technology to improve winter road maintenance operations, but they have some 

concerns regarding the integration of CV data and RWIS data, system performance, privacy 

safety, driver distraction, and cost. 

This work developed the concept of applying CV technologies for improving winter 

travel as follows. Mobile road weather-related data will be collected from CV technology-

enabled snowplows, maintenance trucks, city fleet vehicles, and private vehicles through CAN-

Bus, AVL, and sensors mounted on vehicles. These route-specific data will be combined with 

point data from RWIS and traffic cameras. After data processing and analysis, road segment 

weather information will be analyzed by a maintenance decision-making support system to 

provide optimal maintenance strategies. Meanwhile, the information will also be further 

processed in a traffic management department to provide road users with travel alerts and 

advisories through a series of means to allow them to better select appropriate trip behavior (trip 

time, trip modes, trip routes, etc.). 
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Part II: Proof-of-Concept Demonstration 
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5. Introduction: Developing a Road Surface Friction Prediction and Visualization 
System 

Road surface condition has a great impact on road traffic mobility and safety(Ye et al., 

2012; Chen, et al., 2017; Pisano, 2017) . Especially in the winter season, terrible road surface 

conditions could result in more traffic crashes and a low level of service (LOS). The United 

States spends $2.3 billion annually to keep highways clear of snow and ice; in Canada, winter 

highway maintenance costs more than $1 billion (Shi, 2011). Improving road surface condition 

monitoring systems and operations could result in fewer crashes, higher LOS, improved 

mobility, better fuel economy and sustained economic productivity (Rita, 2018). As one of the 

direct measurements of road surface condition, road surface friction has a strong correlation with 

traffic accident risk (Wallman and Åström, 2001). Therefore, in order to mitigate the impact of 

road surface condition on traffic safety and mobility, an efficient and cost-effective road surface 

friction prediction methodology is needed. 

Road surface friction is defined as the resistance to motion between vehicle and road 

surface, which strongly affects the distance required for a vehicle to decelerate and a driver’s 

safety when a vehicle must brake to avoid a collisions (Mayora and Piña, 2009). In the winter 

season, road surface friction decreases substantially with decreases in temperature, which 

increases the risk for car accidents dramatically (El Esawey et al., 2019). FHWA has reported 

that, in the United States, the majority of traffic accidents happened during wet or icy road 

conditions, as 73 percent of accidents occurred on wet pavements, and 17 percent on snow or 

sleet ((FHWA), 2005). In addition, existing studies have indicated that intelligent systems that 

have the capacity to share timely road condition-related information can potentially increase 

traffic safety (Panahandeh, et al., 2017). Therefore, given that road surface friction is a directly 

quantifiable measurement of road surface condition, an efficient and cost-effective road surface 

friction prediction and visualization system would help improve traffic safety.  

The primary objective of this work was to develop a road surface friction prediction and 

visualization system that relyies on the data collected by sensing devices on connected vehicles. 

The remainder of Part II is organized as follows. Chapter 6 presents a literature review on 

relevant topics. Chapter 7 introduces a system design for the data analysis and visualization 

platform and the proposed methodology for road surface friction prediction. Chapter 8 shows the 

experimental results, and Chapter 9 discusses a demonstration of the system through a case study 
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in Washington state. Part II concludes with Chapter 10, a summary of the research findings and 

future research. 
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6. Literature Review 

6.1.  Road Weather Information System 

Road weather information systems (RWIS) are a platform used to collect, process, and 

broadcast road weather and condition information. Road maintenance departments use RWIS to 

improve road safety in severe weather and to make operational decisions. Many North American 

transportation agencies have invested millions of dollars to deploy RWIS stations to improve 

their information about winter road conditions. The design of these networks usually varies from 

region to region (Biswas et al., 2019).  

The component of an RWIS that collects weather data is the environmental sensor station 

(ESS). The ESS is a set of sensors used to collect and transmit road and weather data. The 

sensors measure weather-related data including road temperature and condition (wet, dry). These 

data are transmitted to an automatic warning system. For drivers, predictions developed from 

these data can increase road safety. 

In the past, RWIS were used by state and local transportation maintenance departments to 

make better operational decisions. The collected weather data enables jurisdictions to make 

winter route plans effectively. While state and local transportation agencies now share weather 

data with more data users, researchers can also use these data to help improve road management 

( Vavrik et al., 2016). 

Many different sensors provide weather‐related data from RWIS. Thermometers measure 

temperature and pavement conditions. Anemometers measure wind speed. Wind vanes measure 

wind direction. Visibility sensors detect fog and smoke. Rain gauges measure precipitation. 

6.2. Sensing Devices on Connected Vehicles 

Several sensing technologies have been developed for winter road surface condition 

monitoring. DSC-111 and DST-111 sensors are two remote optical sensors developed by the 

Vaisala company (of Transportation, 2008; Ye et al., 2012; Ewan, et al., 2013). DSC-111 can 

provide the road surface state (dry, moist, wet, icy, snowy/frosty, or slushy) on the basis of 

backscattered signals of infrared light and can measure the friction level of the road surface, and 

DST-111 can present the pavement surface temperature, air temperature, and relative humidity 

through long-wave infrared radiation detection (Pilli-sihvola et al., 2006). Previous studies have 

demonstrated that DSC-111 can provide accurate surface state measurement, but the friction 

detection of DST-111 is not precise (of Transportation, 2008). The Road Condition Monitor 
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(RCM) 411 is an optical instrument equipped with a transmitter to send a probe light pulse and a 

detector to measure backscattered light, which can be easily installed into a passenger vehicle 

(Haavasoja, et al., 2012). Previous studies and experiments have demonstrated that the RCM-411 

is accurate for temperature, water thickness, and road surface status detection (Haavasoja, et al., 

2012; Maenpaa et al., 2013; Fay, et al., 2018). For friction detection, even when the detected 

friction value does not always accurately match the actual friction, it still can be calibrated to 

provide the actual friction value (Haavasoja, et al., 2012). Such sensing technologies have 

already been employed for real-time road monitoring, e.g., RWIS in the U.S., (Maenpaa et al., 

2013; Saarikivi, 2012; Karsisto and Nurmi, 2016; Singh et al., 2017). However, each sensing 

technology has its own disadvantages, e.g., a fixed sensor can only cover a fixed area, and using 

mobile sensors is time and energy consuming. Therefore, determining how to utilize the data 

collected by such sensing technologies to expand the ability to predict road surface conditions 

would be valuable for improving the effectiveness and efficiency of the whole system. 

6.3. Road Surface Friction Prediction Methods 

Most previous models for predicting road condition-related parameters have been 

developed on the basis of laboratory tests. Shao et al. (1996) proved that ice hazards only happen 

under both conditions, based on field test data from seven countries (Shao et al., 1996). They 

also tried to predict ice conditions on the basis of air temperature, wind speed, and precipitation. 

However, the results showed great differences on different roadways. Samodurova ( no date) 

pointed out that the ice point varies in terms of pavement types. Most ice prediction models have 

been developed on the basis of laboratory tests, and many significant factors have been found to 

be related to ice generation. For example, Mohseni and Symons (Contact and Symons, 1995), 

and Diefenderfer et al. ( 2006) both regressed the relationship between pavement temperature 

and various environmental conditions, such as illumination, air temperature, longitude, latitude, 

etc., but the impact of those factors was still unmeasurable. Therefore, given the existing models 

that were built through laboratory tests, precise road surface conditions are hard to predict.  

By utilizing the data collected by existing sensing technologies, several researchers have 

developed data-driven models for predicting road surface condition-related parameters. Liu et al. 

(2018) developed a road surface temperature prediction model based on a gradient extreme 

learning machine boosting algorithm. Sokol et al. (2017) developed a road surface temperature 

prediction model based on energy balance and heat conduction models. In addition, some 
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researchers have developed road surface condition recognition algorithms based on computer 

vision technologies (Cnn, no date; Sukuvaara and Nurmi, 2012; Jonsson, et al., 2014; Linton and 

Fu, 2016). However, previous studies have had several disadvantages in terms of prediction 

effectiveness. For example, those methodologies can only regress the current road surface 

condition on the basis of current environmental measurements, e.g. air temperature, etc. They are 

not able to predict future road surface conditions. Moreover, past studies have demonstrated the 

existence of the time-series features of road surface condition (Kangas, et al., 2015). However, 

only a few studies have looked at time-series prediction model development. Therefore, a 

prediction method that considers the time-series features of road surface condition is needed. 

A long-short-term memory (LSTM) neural network (NN)is a kind of computational 

intelligence approach for dealing with time-series data (Hochreiter and Urgen Schmidhuber, 

1997). Several studies have demonstrated that LSTM is more accurate for short-term prediction 

problems—e.g. traffic flow prediction, patient visitation frequency prediction—than other 

approaches, such as random forest (RF) and support vector regression (SVR), because of its 

ability to handle both long-term and short-term dependencies. Given the above considerations, 

the primary objective of this study was to develop a road surface friction prediction model based 

on the LSTM NN model and using historical data. RCM-411 friction sensing data were selected 

as the historical data set because of their accuracy. To evaluate the predictive effectiveness of the 

proposed method, several other prediction models were employed for comparison purposes. In 

addition to the overall prediction performance, the influence of the number of time-lags, the 

influence of the time interval between each time-step, and the influence of adding features were 

also evaluated.  

Basically, the inputs to these models is a set of historical road surface condition 

measurements with a fixed temporal resolution for each time step. The output of the forecasting 

model is the same road surface condition parameter in the next time step. For example, if the 

model aims to predict the road surface condition tomorrow, then the measurements of each time 

step in the input data set should have one-day time intervals between each other. However, 

having data points at every time stamp cannot be guaranteed because of weather, cost, or other 

issues, e.g., road monitoring may be provided by vehicles equipped with on-vehicle sensors, but 

those vehicles cannot be guaranteed to travel the road every single day. Therefore, it is highly 

possible for the input data set to have missing values that cannot be handled by the existing 
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prediction models. Such missing data could affect the accuracy and effectiveness of existing 

models, thereby influencing decision-making. 
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7. Road Surface Friction Prediction and Visualization System Development 

7.1. System Overview 

This chapter describes a system proposed for road surface friction and visualization. A 

three-layer system architecture was designed, including a data collection and processing layer, a 

data analysis and data matching layer and a data visualization layer (see figure 7-1). First, real-

time road surface friction data collected by the sensing devices on connected vehicles are 

transmitted to the remote server. Because the raw data may include some erroneous data, 

duplicated data, and noisy data, the system needs to clean the data and classify all data with 

different dates separately. Then, the data are saved into the SQL Server database. In the data 

analysis and matching layer, the data are stored in two databases on the basis of the data type: 

spatial data and non-spatial data. Data with road surface information are treated as non-spatial 

data and are stored in the SQL Server. Map data are downloaded from OpenStreetMap and 

inserted into the PostgreSQL database to show the road surface state on the map. Next, the 

system calls the data analysis module to predict the road friction. The data analysis module is in 

charge of predicting future road surface friction on the basis of the proposed methodology, which 

is introduced in Section 7.2. These predicted results are saved into the SQL Server. In the 

databases, the system finds the corresponding road ID in the PostgreSQL for each predicted 

location in the SQL Server. All the predicted data with a road ID will be saved in the SQL 

Server. Finally, the platform calls the data from the SQL Server to show the predicted results 

intuitively on the DRIVE Net. 
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Figure 7-1. The framework of the system 
 

7.2. Road Surface Friction Prediction Based on Long-Short-Term Memory Neural Networks 

A long-short-term memory (LSTM) neural network (NN) is proposed to predict short-

term road surface friction because of its ability to handle both long-term and short-term 

dependencies (Bengio, et al., 1994; Sundermeyer, et al., 2012). LSTM NNs share similar 

architecture with traditional recurrent neural networks (RNN), which are composed of one input 

layer, one hidden layer, and one output layer. The main difference between LSTM and RNN 

architecture is the structure of the hidden layer (Gers and Cummins, 1999), which is shown in 

figure 7-2. 
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Figure 7-2. Model architecture of the LSTM (The red circles are arithmetic operators and the 
rectangles in different colors are the gates in the LSTM) 

 

Typically, at each time iteration 𝑡𝑡, the LSTM cell has the input layer, 𝑋𝑋𝑡𝑡, the output layer, 

ℎ𝑡𝑡 and the hidden layer, which is called the LSTM cell. By adding a cell state component, the 

LSTM cell is capable of handling long-term dependencies of sequence data. The previous output 

cell state, 𝐶𝐶𝑡𝑡−1, and current input cell state, 𝐶̃𝐶, both influence the current output cell state, 𝐶𝐶𝑡𝑡. 

Three gates control the information to flow into and out of the cell state, which are the forget 

gate, the input gate, and the output gate, denoted as 𝑓𝑓𝑡𝑡, 𝑖𝑖𝑡𝑡, and 𝑜𝑜𝑡𝑡, respectively. The forget gate 

controls how much information from the previous cell state should be forgotten by the current 

cell state. The input gate handles how much information from the current input layer flows into 

the current cell state. The output gate controls how much information from the current cell state 

would be conveyed into the current output layer. They can be calculated by the following 

equations, 

 𝑓𝑓𝑡𝑡 = 𝜎𝜎𝑔𝑔�𝑊𝑊𝑓𝑓𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑏𝑏𝑓𝑓� (1) 

𝑖𝑖𝑡𝑡 = 𝜎𝜎𝑔𝑔(𝑊𝑊𝑖𝑖𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑏𝑏𝑖𝑖) (2) 

 𝑜𝑜𝑡𝑡 = 𝜎𝜎𝑔𝑔(𝑊𝑊𝑜𝑜𝑋𝑋𝑡𝑡 + 𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑏𝑏𝑜𝑜) (3) 

    𝐶̃𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝐶𝐶𝑋𝑋𝑡𝑡 + 𝑈𝑈𝐶𝐶ℎ𝑡𝑡−1 + 𝑏𝑏𝐶𝐶) (4) 

 
where 𝑊𝑊𝑓𝑓, 𝑊𝑊𝑖𝑖, 𝑊𝑊𝑜𝑜, and 𝑊𝑊𝐶𝐶 are the weight matrices for mapping the current input layer into three 

gates and the current input cell state. 𝑈𝑈𝑓𝑓, 𝑈𝑈𝑖𝑖, 𝑈𝑈𝑜𝑜, and 𝑈𝑈𝐶𝐶 are the weight matrices for mapping the 

previous output layer into three gates and the current input cell state. 𝑏𝑏𝑓𝑓, 𝑏𝑏𝑖𝑖, 𝑏𝑏𝑜𝑜, and 𝑏𝑏𝐶𝐶 are bias 
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vectors for gate and input cell state calculation. 𝜎𝜎𝑔𝑔 is the gate activation function, which is 

normally a sigmoid function. 𝑡𝑡𝑡𝑡𝑡𝑡ℎ is the hyperbolic tangent function, which is the activation 

function for current input cell state.  

Then, the current output cell state and output layer can be calculated by the following 

equations. Finally, the output of the LSTM prediction model in this study should be the road 

surface friction in the next time iteration. 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝐶̃𝐶𝑡𝑡 (5) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh (𝐶𝐶𝑡𝑡) (6) 

 
Because it is assumed that there is no spatial correlation between road segments, the 

spatial dimension of the input data is set as 𝑃𝑃 = 1. The unit of time-step for road surface friction 

detection is set as one day, then the data set has 446 time-steps for each road segment. Suppose 

the number of the time-lag is set as 𝑇𝑇 = 𝑡𝑡 with 𝐿𝐿 = 𝑙𝑙 days between each time-lag, which means 

the model used the data in previous 𝑡𝑡 consecutive time-steps to predict the road surface friction 

in the following 1 day time-step. Then the data set is separated into samples with 𝑡𝑡 time-lags and 

the sample size is 𝑁𝑁 = 446 − 𝑡𝑡. Thus, each sample of the input data, 𝑋𝑋𝑡𝑡, is a two-dimensional 

vector with the dimension of [𝑇𝑇,𝑃𝑃] = [𝑡𝑡, 1], and each sample of the output data is a one-

dimensional vector with one component. The input of the model for each road segment is a 

three-dimensional vector, whose dimension are [𝑁𝑁,𝑇𝑇,𝑃𝑃] = [446 − 𝑡𝑡, 𝑡𝑡, 1]. Before being fed into 

the model, all samples are randomly divided into three data sets for training, validating, and 

testing with the ratio 7:2:1. 

7.3. Database Design 

7.3.1. SQL Server 

Database name: CV4WM 

Structure: There are two tables in this database, routing and osm_id,  shown in tables 7-

1 and 7-2. Routing is used to save the historical data and predicted results. Road segment ids 

searched on OpenStreetMap according to each location point are saved in osm_id. The database 

structures are as follows. 
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Table 7-1. Routing 

Columns Type 

DateTime Datetime 

Friction nchar(10) 

State nchar(10) 

Tsurf nchar(10) 

Water nchar(10) 

Latitude Varchar(50) 

Longitude Varchar(50) 

Serial nchar(10) 

 

Table 7-2. osm_id 

Columns Type 

DateTime Datetime 

osm_id varchar(50) 

Friction nchar(10) 

State nchar(10) 

Tsurf nchar(10) 

Water nchar(10) 

Latitude Varchar(50) 

Longitude Varchar(50) 

Serial nchar(10) 

 

7.3.2. PostgreSQL 

Database name: cv4wmmap 

Structure: The map data are downloaded from OpenStreetMap. These data are inserted 

into the PostgreSQL database. There are eight tables in this database: osm_nodes, osm_relations, 

osm_way_classes, osm_way_types, relations_ways, special_ref_sys, ways and 

ways_vertices_pgr, shown in figure 7-3. 
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Figure 7-3. Tables in PostgreSQL 
 

In these tables, ‘ways’ is the most important for this project (figure 7-4). There are 24 

columns in ‘ways’. They are gid, class_id, length, length_m, name, source, target, x1, y1, x2, y2, 

cost, reverse_cost, cost_sreverse_cost_s rule, one_way, maxspeed_forward, 

maxspeed_backward, osm_id, source_osm, target_osm, priority, the_geom. 
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Figure 7-4. Columns in the table ways in PostgreSQL 
 

7.3.3. E-R Diagram 

Routing queries the osm_id from ways, according to the column Latitude and Longitude 

in routing. x2, and y2 represent the latitude and longitude of the end point of the road. Multiple 

locations may belong to the same road segment. Then the query results are saved into the osm_id 

table in the SQL Server. Multiple road segments may own multiple road states. Different states 

can describe different road segments. The logistic relationship between the three tables is as 

shown in figure 7-5. 
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Figure 7-5. E-R diagram for tables 
 

7.4. Data Visualization on DRIVE Net 

Each road segment owns the source and the terminal. The terminal state of the point on 

the road segment is taken as the state of the current road segment. Then then final predicted state 

on the road is visualized on the Digital Roadway Interactive Visualization and Evaluation 

Network (DRIVE Net).  

DRIVE Net is an on-line transportation platform aimed at data sharing, integration, 

visualization, and analysis. The system provides users with the capability to store, access, and 

manipulate data from anywhere as long as they have Internet connections. It can achieve the 

integration and visualization of information needed for decision support. Not only do the 

research findings include data fusion techniques and database design details, but they can also be 

delivered in a functioning DRIVE Net archive service capable of collecting detector data from all 

WSDOT regions and incorporating third party data from both the Washington Incident Tracking 

System (WITS), the INRIX company, and weather databases. In this system, roadway geometric 

data are properly stored in an open-sourced geospatial database, PostgreSQL, and seamlessly 

connect with the SQL Server database (i.e., sensor data, weather data). The platform combines a 

series of loop data quality control algorithms in the back end. These processed data are used to 

generate WSDOT’s Gray Notebook statistics and are available for WSDOT personnel to 

visualize and produce their annual and quarterly congestion reports through the DRIVE Net 

system. A new module named cv4wm on DRIVE Net has been created to visualize the road 
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state. There are six colors for each state level: Dry, Moist, Wet, Slush, Ice and Snow. The model 

integrates the database, road surface friction prediction methodology, and data processing in the 

back end.  
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8. Experimental Design and Numerical Results 

8.1. Experimental Design 

This chapter describes four independent experiments conducted to evaluate the predictive 

performance of algorithm structures and investigate their impacts. First, the predictive 

performance of the proposed LSTM prediction algorithm was evaluated by comparing it with 

other baseline models. Baseline model selection and performance metrics are presented. The 

other three experiments were conducted to investigate the impacts of the number of time-lags, 

the prediction after different numbers of days, and other features related to predicting accuracy. 

The detailed experimental results are presented in Section 8.2. 

8.1.1. Baseline Model Selection 

The performance of an LSTM NN in predicting road surface friction was compared to 

that of many classical baseline models for short-term prediction. Typically, the ARIMA, support 

vector regression (SVR), fandom forest (RF), Kalman filter, tree-based, and feed-forward NN 

models have been used to address short-term prediction problems (Wu et al., 2004; Guo, et al., 

2014; Yuan-yuan Chen et al., 2016), e.g., traffic speed and travel time prediction (Ma et al., 

2015; Cui et al., 2018a; Cui, et al., 2018b). However, the predictive performance of several time-

series prediction models has been demonstrated to be less accurate than that of others, e.g., the 

ARIMA and Kalman filter. On the basis of those previous research results, the SVR, RF, and 

feed-forward NN models were selected for comparing road surface friction predictions with 

those of the proposed LSTM NN model. Among these models, the feed-forward NN, also called 

the Multilayer Perceptron, is popular for precise short-term prediction (Lv et al., 2014). The RF 

and SVR models are also well known for efficient predictive performance (Wu et al., 2004; 

Yuan-yuan Chen et al., 2016). For the parameters of model development, the radial basis 

function (RBF) kernel was deployed in the SVR model. Ten trees were built, and there was no 

pre-determined limitation for the maximum depth of the trees for the RF model. The feed-

forward NN was composed of two hidden layers with 100 nodes in each layer. 

8.1.2. Predictive Performance Metrics 

Mean absolute error (MAE), mean square error (MSE) and mean absolute percentage 

error (MAPE) are used as the measurements of predictive performance. The following equations 

present the measurement formulations. 
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where 𝑁𝑁 is the total number of samples in testing data set, 𝑌𝑌𝑖𝑖 is the ground truth of the road 

surface friction that was detected by the RCM 411 sensor in this study, and 𝑌𝑌�  is the predicted 

road surface friction of the proposed prediction model. Typically, the MAE is used to measure 

the absolute error associated with a prediction, the MAPE is a measure of the percentage of 

average mis-prediction of the model, and the MSE measures the relative error for a prediction. A 

prediction model with smaller values of MAE, MSE, and MAPE performs better. 

8.2. Numerical Results 

8.2.1. Predictive Performance Evaluation 

The proposed LSTM NN model and other baseline models were trained with the same 

training data set for each road segment separately, and the predictive performance for each 

model was calculated on the basis of the predicted value and ground truth value. In this step, 

only road surface friction for the previous time period was used as the model input. The final 

predictive performance measurements were the averaged value of all road segments. Table 8-1 

shows a comparison of the prediction performance of the LSTM with that of the other baseline 

models. Among the other algorithms, the RF model performed much better than the SVR model 

and feed-forward NN, with an MAE of 0.166, an MSE of 0.0132, and a MAPE of 16.6 percent, 

which makes sense because of the majority votes mechanism of the RF model. The feed-forward 

NN had the worst predictive performance, which was caused by the sparsity of the data. The 

proposed LSTM model outperformed all the models, with an MAE of 0.0778, an MSE of 0.0112, 

and a MAPE of 15.16 percent, indicating the best performance in predicting road surface friction 

while considering only the road surface friction in the previous time period. 

Table 8-1. Comparison of the predictive performance of the LSTM with that of other models 
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Models MAE (N) MSE MAPE (%) 
Feed-forward NN 0.1660 0.0132 26.86 
SVR 0.2142 0.0174 21.42 
RF 0.1660 0.0132 16.60 
LSTM NN 0.0778 0.0112 15.16 

 

A further examination of the predictive performance of the proposed LSTM model in a 

more intuitive way involved a comparison of the predicted values of the LSTM on a randomly 

selected day for all road segments with ground truth values, which is presented in figure 8-1. For 

most of road segments, the predicted values were very close to the observed data. Only a few of 

the road segments showed clear errors in road surface condition prediction. Overall, the LSTM 

effectively predicted road surface friction on the basis of historical road surface friction data for 

all road segments. 

 

 

Figure 8-1. Comparison of the predictive performance of the LSTM with observed data 
 

8.2.2. Evaluating the Influence of Number of Time-Lags on Predicting Accuracy 

The number of time-lags is the temporal dimension of the input data, which could 

influence the prediction performance of the proposed LSTM model. Intuitively, more time-lags 

will convey temporal features over a longer time period, and the LSTM will learn more features 

from previous time periods. In order to explore the influence of the number of time-lags, the 

LSTM was trained by the data sets with different numbers of time-lags, from one to ten 

separately, for all road segments. All data samples had the same time interval (one day) between 

time-lags. Table 8-2 shows the average predictive performance of the proposed LSTM models 

that were trained by the data sets with different numbers of time-lags. 

 
Table 8-2. Predictive performance of the LSTM with different numbers of time lags. 
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Time Lags 1 2 3 4 5 6 7 8 9 10 

MAE (N) 0.0862 0.0836 0.0787 0.0812 0.0799 0.0800 0.0778 0.0832 0.0797 0.0824 

MSE 0.0135 0.0133 0.0117 0.0126 0.0119 0.0121 0.0112 0.0128 0.0117 0.0126 

MAPE (%) 17.62 17.82 16.23 16.97 16.14 16.57 15.16 16.81 15.58 16.65 

 

Note that all three measurements (MAE, MSE, and MAPE) gradually dropped as the 

number of time-lags decreased from one to seven. The LSTM model performed with the most 

precise prediction when the number of time lags equaled seven. Once the number of time lags 

was greater than seven, the prediction performance became worse with a little fluctuation. The 

possible reason might be that the excessive time lags made the LSTM too complex, which 

caused some overfitting issues with the LSTM. Thus, the prediction effectiveness was influenced 

by the unnecessary complexity of the LSTM. 

8.2.3. Evaluating the Accuracy of the Prediction after Different Days 

The time interval between time-lags indicates how often a historical data point would be 

input into the proposed LSTM model. In this study, the frequency of road surface friction 

detection was once per day, so the minimum time interval between time-lags was one day. If the 

time interval between time-lags was set as  one day, then the output would be the road surface 

friction after  one day. Thus, if the road surface friction after 𝑙𝑙 days was predicted, then the time 

interval between each time-lag of the input data should be set as 𝑙𝑙. By varying the time interval, 

the prediction time could be adjusted. Then the model could be not only dedicated to predicting 

the road surface friction after a fixed number of days. In order to demonstrate the road surface 

friction prediction accuracy after different numbers of days, the proposed LSTM was trained 

separately by the data sets with different time intervals between time-lags from one to ten for all 

road segments. Table 8-3 shows the average predictive performance of the LSTM models. 

Table 8-3. Predictive performance of the LSTM with different intervals between time lags 
Time 
Interval 
(Days) 

1 2 3 4 5 6 7 8 9 10 

MAE (N) 0.0790 0.0873 0.0903 0.0948 0.1043 0.1096 0.1000 0.1086 0.1085 0.1190 

MSE 0.0127 0.0146 0.0152 0.0166 0.0195 0.0229 0.0189 0.0222 0.0220 0.0232 

MAPE (%) 15.24 18.01 17.61 19.99 21.06 21.75 19.86 22.63 21.33 22.39 
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Obviously, as the time interval between time lags became larger, the predictive 

performance of the LSTM got worse for all three performance measurements. This suggested 

that the accuracy of road surface friction prediction would decrease with larger predicting 

intervals\. Note that as the predicting interval became larger, the prediction accuracy did not drop 

enough to make the prediction accuracy unacceptable. The road surface friction prediction of 

five days resulted in a MAPE of about 20 percent and relatively low MSE and MAE values. 

Even when the time interval between time lags was ten days, the MAPE for the proposed LSTM 

model was still 22.39 percent. Figure 8-2 shows the boxplots of the predictive performance of 

the proposed LSTM models trained with different days between time lags. They show that, while 

the time intervals between time-lags became larger, the variance in predictive performance got 

larger for all three predictive performance measurements. The 25th percentiles of the three 

measurements were stable as the predicting time interval got larger. The 75th percentile 

increased while the predicting time interval changed from one day to day days. In summary, the 

proposed LSTM model was found to be accurate for predicting short-term road surface friction. 

When the predicting time interval became larger, the prediction accuracy decreased, which was 

consistent with previous research results showing that the road surface weather conditions have 

short-term time-series features but long-term features (Brijs, et al., 2008).  
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Figure 8-2. Boxplots of the predictive performance of the LSTM with different days between 
time lags (a) MAE comparison of the LSTM with different numbers of days between time-steps, 

(b) MSE comparison of the LSTM with different numbers of days between time-steps, (c) 
MAPE comparison of the LSTM with different numbers of days between time-steps. 

 
8.2.4. Evaluating the Influence of Other Related Features on Predicting Accuracy 

The above LSTM prediction models were trained only with friction values from past time 

periods. Theoretically, road surface friction is mainly determined by road surface water 

thickness, road surface temperature, and air temperature. Therefore, it would be meaningful to 

add more variables as input to the LSTM model to explore the influence of those features on 

prediction accuracy. 

Figure 8-3 shows the scatterplot matrix of road surface water thickness, road surface 

friction, road surface temperature, and air temperature collected by RCM 411 sensors to display 

the correlations among these features. The road surface temperature and air temperature showed 
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a strong correlation, with all the dots centralized along the diagonal line. However, road surface 

friction does not have a clear correlation with two temperature-related measurements. The dots 

spread in the plots without specific patterns. In addition, the scatter plot of road surface water 

thickness and road surface friction presents a U-shaped pattern. The road surface water thickness 

reaches a large value when the road surface friction value is relatively large or small. On the 

basis of the above, two additional experiments were conducted to investigate the influence of 

these features on predicting accuracy. The LSTM models were trained by adding road surface 

water thickness alone and by adding road surface water thickness and temperature. Seven time-

lags and the one-day time interval between time-lags were selected for model training. The 

resulting prediction performance was compared with the prediction performance of the LSTM 

model trained with only road surface friction. A comparison of the results is shown in table 8-4. 

 
Figure 8-3. Scatter plots matrix of features 

 

Table 8-4. Comparison of the predictive performance of the LSTM with different features 

Data Input of Prediction Model MAE (N) MSE MAPE (%) 
Friction 0.0778 0.0112 15.16 
Friction, Water Thickness 0.0742 0.0102 14.58 
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Friction, Water Thickness, Road 
Surface Temperature 0.0948 0.0159 21.97 

 

As shown in table 8-4, the predictive performance of the LSTM was improved by adding 

road surface water thickness as input to the model. All three predictive performance 

measurements achieved lower values. This confirmed the findings of a previous study that road 

weather condition correlates with rainfall in the past time period (Hambly et al., 2013). However, 

when road surface water thickness and road surface temperature were added to the prediction 

model, the predictive performance became worse than when only road surface friction was the 

input. All three performance measurements increased a lot. Given the weak correlation between 

road surface friction and temperature-related measurements, the possible reason could be that the 

additional temperature-related features made the LSTM too complicated and introduced lots of 

useless information to the LSTM model. The effectiveness of the useful feature could have been 

influenced by the excessively complex model structure, thereby reducing the model’s accuracy. 

In a previous study, the same situation was found for short-term traffic speed prediction (Cui, et 

al., 2018b). In that study, the accuracy of traffic speed prediction of the proposed LSTM was not 

improved by adding traffic volume and traffic occupancy. In summary, the accuracy of the 

proposed LSTM prediction model was improved by adding road surface water thickness from 

the past time period as input for predicting road surface friction after one day, but accuracy was 

decreased by adding road surface water thickness and temperature simultaneously because of the 

excessively complicated model structure.  

8.3. Key Functions of the System 

8.3.1. Historical Data Analysis and Visualization 

The system stores collected data and the historical data in the database. Once it receives a 

request to query historical data from the DRIVE Net, the platform calls the road data 

corresponding to that date from the database. In the backend, the system assigns colors according 

to the state for each road segment. Then the platform can show the road state with colors on the 

map. 

8.3.2. Future Data Prediction and Visualization 

On the basis of the historical collected data, the system can predict the future road surface 

condition and visualize it on the DRIVE Net. When there is a request to predict the road surface 
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condition for a specified date in future, the system will call the road surface friction prediction 

methodology. The method is integrated into the system and uses the historical data as input. 

After the methodology outputs the results for prediction, the system stores the results into the 

database. It then shows the predicted results on the map by calling the backend of the system. 

8.4. Case Study in Washington State 

The following is the case study of this platform in Washington state based on the 

framework discussed in Section 7.1. The framework included data collection and processing, 

data analysis and matching, and data visualization. Data were collected on a continuous stretch 

of road in Washington state by the vehicle sensor. The data set needed to be preprocessed before 

its storage in the database. Then the framework integrated databases, algorithms, and web 

platforms onto the DRIVE Net platform. A new module was created on the DRIVE Net named 

CV4WM under Multi Module Analysis. Once a request had been made on the CV4WM panel, 

the framework called the methodology and the corresponding data to calculate friction on the 

case road. Then the results were stored in the database. The platform called the back end to show 

the predicted results on that road on the right map panel.  

8.4.1. Data Collection 

The data set RCM_WA was collected by the Road Condition Monitor (RCM) 411 sensor. 

The RCM 411 is an optical sensing-based, on-vehicle road surface condition sensor. It can be 

installed on a vehicle as in figure 8-4 and linked to cell phones by Bluetooth. RCM 411 sensors 

can collect road surface condition, water/ice layer thickness, and modeled friction. RCM_WA 

contained data from June 3, 2019, to June 14, 2019. For each road segment, 27 elements were 

collected, including Date, Time(-07:00), S1, S2, S3, Friction, State, Ta, S7, Tsurf, S9, S10, S11, 

Water, Speed, Direction, Latitude, Longitude, Height, Accuracy, Tdew, Friction2, Distance, 

Serial(RCM411 V 2.59 2016-09-29 - RCM Mobile v1.2.7), TaOBD, AirFlowRateOBD, and 

LambdaOBD. In this case, Date, Time, Friction, Latitude, and Longitude were useful for road 

surface prediction and visualization. The system could predict future friction from those five 

elements. A sample for collected data is shown in table 8-5. For the first record in this sample, 

the road friction at the location with the coordinate values (47.21237, -123.106) was 0.34 on 

June 8, 2019. The state was 5, meaning that the road surface had ice. 
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                                         (a)                                                                (b) 

Figure 8-4. The RCM 411 sensor 
 

Table 2-5. A sample for source data 
Date Time Friction State Latitude Longitude Distance 

2019.06.14 11:13:40 0.34 5 47.21237 -123.106 0 

2019.06.14 11:13:41 0.34 5 47.21236 -123.106 0 

 

The locations of the data in the RCM_WA are shown in figure 8-5. The vehicle drove 

from near Sanderson Field to nearby Olympia every day. The total length of the road segments 

was 90,800 meters on average for each day.  
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Figure 8-5. Discrete data state on the map 
 

8.4.2. Data Analysis 

The source data set is shown in table 8-6. RCM_WA covered 11 days, on June 3rd and 

from June 5th to 14th. Each document contained the sensing data on that day, which were the 

same as the file title. In each file, the data set included 27 columns, including Date, Time, 

Friction, State, Latitude, Longitude, Distance and so on. There were many noisy data in the each 

source file. For example, although the data were collected in June, there were state levels 5 and 6 

caused by sensor error. State levels 5 and 6 indicated that the road had ice or snow. In addition, 

some documents shared the same content. An example is in table 8-7. This sample was recorded 

on June 14, 2019, from 11:13:40 to 12:58:09 every second. The source position was at 

(47.21237, -123.106). In the fourth record in this sample, the distance was 3, meaning that the 

vehicle had traveled for 3 miles from the source position, and the position had changed to 

(47.21235, -123.1061). The friction at this location was 0.33. The state was 5, indicating that the 

road was icy, although in fact the road in June was without ice. So data first had to be cleaned. 
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Only six days, from June 7, 2019, to June 12, 2019, were selected for further analysis. Then the 

duplicate data had to be removed. The total length of the shared road segments was 90,800 

meters. The whole road was separated by 239 road segments, named from 0 to 238 in csv format. 

The preprocessed data were separated by 239 road segments, each saved in a file folder named 

from 0 to 238. Each file contained the records from June 7, 2019, to June 12, 201,9 of the same 

almost 380-m length road segment. An example is in table 8-8. For road segment 0, there were 

records from June 7, 2019, to June 12, 2019. The friction was stable (0.81), and the road state 

was dry (number 1). All the preprocessed data had to be stored into the SQL Server database. All 

data were clean and could be used as input for the methodology. 

There were 35 files in the source folder. Each file included daily road data collected by 

sensors on the study route on June 3rd and June 5th to 14th. The acquisition time of each file was 

included in the middle of the file name. 
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Table 8-6. Source data set file folder 

File name Format 

RCMF81_20190603 .csv 

RCMF81_20190605 .csv 

RCMF81_20190605_1 .csv 

RCMF81_20190606 .csv 

 

Table 8-7. Sample of the source data in each file  
Date Time Friction State Latitude Longitude Distance 

2019.06.4 11:13:40 0.34 5 47.21237 -123.106 0 

2019.06.4 11:13:41 0.34 5 47.21236 -123.106 0 

2019.06.4 11:13:42 0.33 5 47.21235 -123.1061 0 

2019.06.4 11:13:43 0.33 5 47.21235 -123.1061 3 

… … … … … … … 

2019.06.4 12:58:09 0.35 6 47.23861 -123.1079 16180 

 

Table 8-8. Processed data on road segment 0 on June 7, 2019 

Date Friction State Latitude Longitude Distance 

2019.06.07 0.81 1 47.23897 -123.1084 0 

2019.06.07 0.81 1 47.23899 -123.1085 0 

2019.06.07 0.81 1 47.23903 -123.1087 20 

… … … … … … 

2019.06.07 0.81 1 47.23625 -123.11 370 

… … … … … … 

2019.06.12 0.81 1 47.23866 -123.108 0 

… … … … … … 

2019.06.12 0.81 1 47.23652 -123.11 391 

 

8.4.3. Data Visualization 

Figure 8-5 shows the discrete predicted state visualization on the map. The state for each 

location can be seen clearly in figure 8-6. Figure 8-7 shows the final visualization on the 
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platform. States 1 to 6 are given different colors. The platform shows the whole road state, with 

instructions on the left panel. The detailed state for each road segment can also be enlarged to be 

observed as in figure 8-8. 

Figure 8-6 shows some of the detection points on the road in one day. A yellow point 

means that the road state was wet, and a red one means the road state was dry. This is the 

representation of road conditions with discrete points. Next, the system determines the road 

segment on map that is closest to each point and converts the discrete representation into a 

continuous road segment representation. 

 

 

Figure 8-6. Road state for each point 
 

On DRIVE Net, a new panel under the Multi-Model Analysis was created named 

CV4WM, shown in figure 8-7. This panel allows users to choose the query date. Below the date 

selection, there are two buttons. The second button, “Predict Washington Road Surface 

Condition,” was used for the case study in Washington. A legend of the road surface condition is 

also displayed on the map. Colors frrom dark red to dark blue indicate changes in the road state 

from dry to snow. On the right hand of the platform, the query result for the road state can be 



 

57 

seen on the OpenStreetMap with colors. Because the case study in Washington took place in 

June, the road surface varied among dry, moist, and mostly wet. 

 

 

Figure 8-7. Visualization on DRIVE.NET 
 

In figures 8-8 and 8-9, the road state can be seen more clearly. Comparing those with 

figures 8-6 and 8-7, the road can be shown in a sequential line by selecting the corresponding 

road segment according to each point. The system selects the state of the last point of a road 

segment as the state of the whole road segment. So the platform can show the whole road state 

on the map sequentially. 
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Figure 8-8. Detailed state for each road segment 
 

 

Figure 8-9. Detailed state for each road segment 
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9. Conclusions 

This work proposed a three-layer system for road surface prediction and visualization. 

The proposed system includes a data collection and processing layer, a data analysis and 

matching layer, and a data visualization layer. The data collection layer is responsible for 

collecting road surface friction data and geospatial data. The data analysis and matching layer 

aims to predict future road surface friction and to match non-spatial data and spatial data together 

for visualization. The data visualization layer aims to present the predicted results and historical 

records on DRIVE Net based on user’s requests.  

To demonstrate the proposed road surface friction prediction method, several 

experiments were conducted to evaluate the method’s predictive performance in comparison 

with other baseline models and to investigate the impacts of algorithm structures and other input 

variables. The experimental results showed that the proposed LSTM road surface friction 

prediction model outperformed all other baseline models in terms of the lowest values of MAE, 

MSE, and MAPE. The number of time-lags and the predictive time interval influenced the 

predictive performance of the proposed model. The LSTM prediction model achieved the most 

accurate prediction with seven time-lags, and the prediction accuracy dropped when the 

predictive time interval got larger. Road surface water thickness and road surface temperature 

were added to the proposed prediction model as model input. Road surface water thickness 

improved predictive accuracy, but road surface temperature did not.  

This work also conducted a case study in Washington state to demonstrate the 

effectiveness of the proposed system. The findings of this study can be used to support road 

maintenance planning and decision making, helping to mitigate the impacts of inclement road 

surface conditions on traffic safety and mobility. Future research should include improving the 

road surface prediction algorithm in terms of accuracy and efficiency, and developing dynamic 

traffic control strategies based on real-time road weather conditions. 
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10. Introduction: Addressing Weather Impacts on Highway Operations 

Traffic congestion, both recurring and non-recurring, exerts an influence on the traffic 

network. It is clear from figure 10-1 that non-recurring sources of congestion account for 60 

percent of traffic congestion, whereas recurring traffic sources are responsible for the remaining 

40 percent. Among those, our subject of interest was how to reduce the effect of congestion 

during “bad weather” scenarios, leading to an improvement in the operational performance of 

traffic. 

 

 

Figure 10-1. National summary for the sources of congestion  
(Source: https://ops.fhwa.dot.gov/aboutus/opstory.htm) 

 
In the past, congestion problems were solved by building new highways or adding lanes 

to increase roadway capacity. However, these types of practices are not encouraged as this type 

of solution is resource-expensive because of limited land available for right of way, increasing 

construction costs, and environmental impacts (Ioannou and Chien, 1993). Accordingly, different 

approaches are needed to improve the performance of highway sections. Limitations in the 

capacity of highways are attributed to disturbances and traffic flow instability that result from 

driver behavior. As tangible examples of new transportation modes increase every day, it is 

likely that future transportation will be characterized by the evolution of the cutting-edge 

technology of connected vehicles (CVs). Developing CV technologies will offer more safety by 
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64 

reducing human interaction. The USDOT anticipates that over 80 percent of non-impaired 

incidents could be attenuated through the implementation of CV technology (Abdulsattar et al., 

2019a & b). In addition, the increasing demand for the movement of people and goods could be 

ameliorated through the implementation of new technologies. New drivers’ assistance and 

protection systems, in addition to vehicle communication technologies, hold promise to enhance 

the performance of the traffic network by providing drivers with meaningful information 

regarding travel conditions and other useful inputs that could help them avoid incidents and 

congestion locations. With these exciting prospects, leading vehicle manufacturers, with the help 

of technology companies, have been working on developing newer strategies to deploy CVs and 

coordinate with other infrastructure components. Recent endeavors to bring these concepts of 

CVs into the real world have included deployment through USDOT sponsored pilot programs in 

New York City, Tampa, Florida, and Wyoming. Because the future of connected vehicles is 

becoming more focused, the current transportation network must adapt to this technology in the 

near future. 

The primary motivation for establishing V2V communication is to improve the capacity 

and throughput of highways by attenuating disturbances in traffic flow (Shladover et al., 2008) 

by reducing driver-vehicle interaction. Connected vehicle technologies utilize wireless network 

communication systems to exchange information with surrounding vehicles and infrastructures 

(Malakorn and Park, 2010). CVs are considered to be a potential candidate for improving the 

stability of the traffic flow, travel time reliability, roadway capacity, and safety (Schakel et al., 

2010; Abdulsattar et al., 2018; Abdulsattar et al., 2019). The exchange of information through 

V2V communication enables vehicles to adjust their speed and following distance on the basis of 

down-stream and adjacent-lane traffic. This has the potential to increase lane capacity up to 

double the capacity of the  existing traffic network (Shladover et al., 2008; Milanes et al., 2013). 

Furthermore, through the utilization of the V2V communication system, vehicles can maintain 

short time-headways and increase lane capacity under traffic conditions that require frequent 

changes in speed (Van Arem et al., 2006; Bu et al., 2010). Therefore, V2V communication 

technology has the potential to enhance the efficiency, reliability, and operational performance of 

the transportation network (Talebpour et al., 2016). Moreover, providing real-time information 

to  drivers is expected to improve their response times (Xu et al.,  2002), which will positively 

affect existing traffic capacity (Van Arem et al, 2006; Bu et al, 2010). 
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Therefore, this work focused on the simulation of operational enhancements of highways 

through the deployment of vehicle communication technology during inclement weather. While 

many studies have already researched ways to mitigate congestion during adverse weather, a gap 

remains in the literature demonstrating how connected vehicle technologies can be applied to 

better manage traffic network during such events. The traffic performance benefits associated 

with the emergence of vehicle communication technology, and the lack of tools to evaluate those 

benefits, were the impetus for this project. 

 

  



 

66 

 

 

  



 

67 

11. Existing Approaches to Evaluate CAV Technologies 

Connected and autonomous vehicles (CAVs) will be introduced on U.S. roads in the very 

near future. As a medium of technological evolution, CAVs are likely to upend traditional traffic 

composition, usher in new operational models, and disturb the nature of traffic flow 

fundamentals and mobility management (Mostafizi et al., 2017, Mostafizi et al., 2018, 

Abdulsattar et al., 2019a). It has been postulated that vehicle communication technology, in the 

form of CVs and CAVs, will influence traffic behavior, and there will be a time when human 

driven vehicles, CVs, and CAVs will coexist in an interconnected network of traffic. The fact 

that CVs and CAVs are equipped with an array of sensors that help them exchange information 

between vehicles and increase automated actions, making them more responsive to split-second 

incidents and reducing human to human interaction, establishes them as a medium for improving 

safety, increasing mobility, and reducing emissions. These information exchanges encompass 

two types: vehicle to vehicle (V2V) and vehicle to infrastructure (V2I). Vehicle communication 

technology involved in V2V communication represents an important step in highway automation 

because of its ability to improve highway performance at high market penetration rates (Vander 

Werf et al., 2002).  

Although communication technologies offer different innovative ways to improve 

transportation system performance, transportation agencies have not been able to evaluate and 

identify applications that best accommodate their requirements. The literature shows that there 

have not been any practical ways to determine how much advantages the transportation network 

would gain as a result of the deployment of CVs. In addition, available transportation planning 

and analysis tools are not designed to quantify the benefits associated with deployment of the 

emerging vehicle communication technology. In summary, these tools are not able to consolidate 

and simulate vehicle communication and automation features. 

Because traffic congestion imposes a great amount of pressure on the environment, 

economy, and commuters’ safety, improving the operational and traffic performance of traffic 

networks is of importance. Instability in traffic flow, often termed as stop-and-go conditions, is 

considered to be the main reason behind traffic congestion (Ploeg et al., 2011). In the past, 

solutions to the congestion problem have been to build new highways to increase roadway 

capacity. However, this type of solution is often not desired for reasons that include increased 

construction costs, a lack of land, and environmental impacts (Ioannou and Chien, 1993). Given 
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these factors, it is necessary to develop other effective measures to alleviate growing traffic 

congestion problems. 

Vehicle communication technology, in the form of V2V and V2I communication, is 

considered to be a promising approach for solving traffic congestion problems (Zhou et al., 2012, 

Mostafizi et al., 2018). CVs have the potential to enhance traffic performance in terms of safety, 

mobility, and environmental impacts (Genders and Razavi, 2015). Moreover, V2V/V2I 

communications have proved their effectiveness at maintaining  faster response times and thus 

more efficient and safer networks (Jones and Philips, 2013; Xu et al., 2002). This technology 

promises to be an important step toward automation in highway management because of its 

potential to double the capacity of highways at high market penetration (MP) levels (Vander et 

al., 2002). The primary motivation behind establishing V2V communication is that it will 

improve the capacity and throughput of highways, in addition to attenuating disturbances in 

traffic flow (Shladover et al., 2015). CVs are considered to have the potential to improve 

stability, roadway capacity, and safety of the traffic flow (Schakel et al., 2010).  

 CV technologies utilize wireless network communication systems to exchange 

information with surrounding vehicles and infrastructure (Malakorn et al., 2010). The exchange 

of information through V2V communication enables vehicles to adjust their speed and following 

distance on the basis of down-stream and adjacent-lane traffic. This has the potential to double 

the lane capacity of the existing traffic network (Milanés et al., 2014). Moreover, CVs have the 

ability to reduce traffic congestion at bottlenecks caused by lane-drops and to improve traffic 

flow (Davis 2016). Tthrough the utilization of V2V communication systems, vehicles are able to 

maintain short time-headways and to increase lane capacity under traffic conditions that require 

frequent changes in speed (Bu et al., 2010). Therefore, V2V communication technology has the 

potential to attenuate string instability through information transfer between vehicles (Jones et al. 

2013, Milanés et al., 2014, Ploeg et al., 2011, Van Arem et al., 2006). In addition, Talebpour et 

al. (2016) found that CV technology has the potential to improve the efficiency and reliability of 

the driverless transportation network. Limitations in the capacity of highways are caused by 

disturbances and instability of traffic flow that result from the drivers’ behaviors and lack of 

information (Hadiuzzaman et al., 2019). Vehicle communication technology, by providing real-

time information to drivers, is expected to address this situation by maintaining faster response 

times (Jones et al., 2013). Thus, CVs have the potential to improve the traffic performance of 
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roadway networks and increase the capacity of the highway (Bu et al., 2010b, Van Arem et al., 

2006) because of their ability to anticipate potential incidents will result in accident-free and 

smooth driving under complex traffic environments (Treiber et al., 2006).  

To measure the impacts of the vehicle communication system on traffic performance, 

Milanés et al. (2014) designed, developed, and tested an enhanced V2V communication system 

for its impact on traffic performance. Results showed that there was an improvement in response 

time and also better string stability of traffic, demonstrating the potential to mitigate traffic 

disturbance and improve highway capacity and traffic flow stability. Wolshon et al. (2015) 

further tested the deployment of a CV system by using a microsimulation platform using 

AIMSUN. To simulate CV behavior, the time-headway between consecutive vehicles was 

reduced from 1.4 to 0.6 seconds. This reduction in the following time gap resulted in an increase 

in the lane capacity of the highway from 2,200 vphpl to 4,000 vphpl at a 100 percent MP level. 

Shladover et al. (2012) developed a microsimulation model to evaluate the impacts of V2V 

communication on highway capacity. The research concluded that V2V communication has the 

potential to increase lane capacity up to 4,000 vph at full market penetration. Arnaout and 

Bowling (2011) investigated the effects of V2V communication on a multi-lane freeway without 

introducing any traffic disturbances such as obstacles, ramps, or lane drops. The results showed 

that the introduction of CVs had a positive influence on traffic capacity, especially at high traffic 

densities. Arnaout and Bowling (2014) also assessed the impact of V2V communication 

technology on a four-lane freeway with an on-ramp to induce traffic disturbances. In general, the 

results showed the ability of CVs to improve traffic performance and reduce traffic instability. 

A variety of studies have adopted empirical as well as simulation-based approaches to 

measure the potential impacts of variable message signs, vehicle connectivity, and other 

technologies that could improve network performance under different roadway scenarios. 

However, there has been a lack of empirical data on CVs, especially on CV market penetration 

levels, to establish microsimulation-based analysis as a feasible alternative for analyzing the 

impacts of CV market penetration levels on traffic safety performance. 

Van Arem et al., (2006) developed MIXIC, a traffic flow simulation model, to explore 

the influence of intelligent vehicles on traffic flow. The results demonstrated that an automated 

longitudinal control implemented in the cooperative following (CF) systems with inter-vehicular 

communication could exert a negative effect on traffic safety.  
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Paikari et al. (2013)used the PARAMICS microsimulation software to simulate V2V 

communication within a network of intelligent transportation systems (ITS) applications through 

a Multi-agent System Engineering (MaSE) methodology to picture CV modules as a Multi-

Agent System (MAS). Two application programming interfaces (APIs) were implemented to 

simulate the CV systems. This study focused on the application of a DSRC-based V2V and V2I 

communication system to estimate traffic safety and mobility parameters. Results showed that 

the introduction of CVs would improve the safety and mobility of traffic conditions on the 

freeways of Calgary, Canada. 

Later, a PARAMICS-based virtual V2V communication platform was developed to assist 

neighboring CVs in detecting and disseminating information about collision occurrence (Kattan 

et al., 2010). The study showed the efficacy of inter-vehicular communication in improving the 

safety and travel time of the transportation network. In addition, Bu et al. (2010a) performed an 

empirical-based study in which a V2V communication system was developed to test vehicle 

communication impacts on traffic performance. The developed system used LIDAR technology 

as well as a DSRC communication system to receive information from the preceding vehicle. 

The new system was found to have the potential to enhance traffic safety and mobility.  

Also, variable message signs (VMS) are considered to be an efficient way to convey 

traffic information data to drivers. This technology has the potential to be embedded in 

autonomous vehicles (Genders and Razavi, 2015). A simulation-based study was conducted to 

test the impacts of implementing two variable speed-limit control signs on highway work zones 

(Lin et al., 2004). 

Talebpour et al. (2016) developed a methodological framework to simulate different 

types of vehicles, including CAVs. The study showed that vehicle automation would help 

prevent shockwave formation, thereby increasing string stability and increasing the traffic 

throughput at certain market penetration rates under the model assumptions. Later, Tientrakool et 

al. (2011) applied a numerical analysis approach to evaluate the impact of V2V communication 

technology on the capacity of a highway section. The analysis involved considering the inter-

vehicular distance between two consecutive vehicles. Study results showed that, at 100 percent 

market penetration, the CV technology had the potential to increase the capacity over 273 

percent. Moreover, a two-lane cellular automaton (CA) model based on a proposed two-state, 

safe-speed model (TSM) was developed to investigate the impacts of CAVs in heterogeneous 
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traffic-flow conditions (Ye et al. 2018). The developed model numerically simulated and 

analyzed the impacts of CAVs with different characteristics at different levels of market 

penetration. Results showed an insignificant increase in the capacity at MP level below 30 

percent. However, for MP levels exceeding 30 percent, the increase in the highway capacity was 

highly dependent on the characteristics of the CAV. In addition, Chen et al. (2017) and Ghiasi et 

al. (2017) developed an analytical formulation of traffic operational capacity under mixed traffic 

conditions. Most of the aforementioned studies focused mainly on overall traffic performance 

and traffic flow stability. However, most of the studies did not quantify the impacts of the 

communication technology on highway capacity. Furthermore, these studies mainly focused on 

lane policy determination, autonomous vehicles distribution, and lane management under 

varying levels of traffic demand. 

In addition to addressing the gap in the aforementioned literature, we bridged 

microscopic car-following behavior, represented in the utilized Intelligent Driver Model (IDM) 

car-following model, and macroscopic traffic flow under varying MP levels of CAVs. Most of 

the existing analysis and simulation tools used for transportation facility planning, operations, 

and evaluation, including the Highway Capacity Manual (HCM) (HCM 2010), do not 

incorporate the impacts of CAVs on enhancing the capacity of highways. For instance, HCM 

uses a static macroscopic methodology in which the parameters are sensitive to the time-

headway and perception-reaction time. This research formulated an analytical capacity model to 

estimate the potential future impacts of CAVs under different MP levels. Furthermore, an 

advanced and flexible microscopic agent-based modeling and simulation (ABMS) framework 

able to simulate, evaluate, and quantify the impacts of CAVs on enhancing the capacity of 

highways in different settings was developed. The framework is able to simulate and capture the 

complexity and stochasticity in driver behavior. Therefore, the results obtained from this 

research could serve as a foundation for analysis and planning tools to incorporate the emerging 

CAV technologies in the future. The developed analytical and simulation frameworks are 

expected to serve as a foundation for transportation organizations and federal agencies to use in 

evaluating the future impacts of CAV technologies while developing infrastructure that 

accommodates this specific type of technological evolution. 

In summary, the literature is replete with analyses of the impacts of CAVs on the capacity 

of highways. However, most of the existing analysis and simulation tools used for transportation 
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facilities planning, operation, and evaluation, including the Highway Capacity Manual, have 

mainly focused on either simulation (Olia et al., 2018) or analytical frameworks (Ye and 

Yamamoto, 2018). In addition, similar studies have not simultaneously considered microscopic 

traffic flow dynamics (i.e., traffic flow instabilities and lane changing behavior) that have a 

significant impact on the capacity performance of highways (Ghiasi et al, 2017) or autonomous 

merging and lane-changing behavior (Arnaout, 2011). Our proposed framework is an integrated 

approach in which all the above features are fused.  

This research formulated an analytical capacity estimation model to quantify the potential 

future impacts of CAVs under different MP levels. This research  

• addressed microscopic car-following behavior, represented in the utilized Intelligent 

Driver Model (IDM) car-following model and macroscopic traffic flow under varying 

MP levels of CAVs;  

• formulated an analytical IDM-based capacity estimation model to quantify the 

potential future impacts of CAVs under different MP levels;  

• considered the microscopic traffic flow dynamics (i.e., car-following, merging, and 

lane-changing behaviors) of conventional vehicles and CAVs as explained in further 

detail.  

Therefore, the results obtained from this research could serve as a foundation for analysis and 

planning tools to incorporate emerging CAV technologies for better winter travel in the future. 

The developed analytical and simulation frameworks are expected to serve as a foundation for 

transportation organizations and federal agencies to use in evaluating the future impacts of CAV 

technologies while developing infrastructure that accommodates this specific type of 

technological evolution. 
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12. Development of a Simulation Framework for CAV  

One of the major challenges in traffic flow modeling is to predict driving maneuvers and 

behaviors. Most lane changing and car-following models assume that a vehicle will change a 

lane within an available gap and will maintain a safe following distance (Arash Olia et al., 2013). 

Moreover, for the purpose of simulating longitudinal car-following behavior, traffic flow 

conditions have to be defined. Traffic is considered to be at a free-flow state when there are no 

constraints on vehicles’ longitudinal or lane-changing behavior. Once traffic density starts to 

influence traffic operations, such as affecting lane changing behavior or driving speeds, then 

traffic conditions are no longer considered to be in free flow.  

12.1. CAV Agents’ Communication and Behavior 

For V2V and V2I communication, Dedicated Short Range Communication (DSRC) is 

utilized. DSRC provides a communication range of 3,000 ft in diameter, with an ability to extend 

the communication range through multiple transmitters (Roodell 2010). Transmission extension 

can be carried out with CAVs acting as transmitters. CAVs will receive information from the 

leading vehicle within the range of 3,000 ft. The information may include the vehicle's physical 

location, speed, acceleration, and deceleration of the preceding CAV. The CAV establishes 

communication and reacts to the information received from the preceding vehicle if it is within a 

500-ft range. 

Similarly, CAVs can establish V2I communication with a roadside unit. The roadside 

unit provides the vehicle with information related to any upcoming incident, recommended 

speed, and upcoming on-ramps that may require advance lane-changing. In free-flow conditions, 

CAVs will follow the speed limit of the roadway section provided through the V2I 

communication. Traffic is considered to be in free-flow conditions when there are no constraints 

on the vehicles' longitudinal and lane-changing behavior. However, when traffic density imposes 

constraints on the vehicles' maneuvering, traffic is no longer considered to be in free flow. 

Established V2V and V2I communications allow CAVs to maintain short following time-

headway between two consecutive CAVs, as well as a very short reaction time. The reaction-

time is assumed to be 0.1 second to account for communication latency. However, if the 

preceding vehicle is a conventional vehicle, the CAV will not be able to establish 

communication, and a short following time-headway cannot be maintained. Nevertheless, short 
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reaction-times can be maintained because of the detection systems with which the CAV is 

equipped. 

12.2. Vehicles Behavior in Heterogeneous Traffic Flow 

12.2.1. Car-Following Behavior  

This section describes the modeling assumptions and parameters underlying the 

analytical capacity formulation and the ABMS model in terms of the car-following and lane-

changing behavior of CAVs and conventional vehicles for heterogeneous traffic flow. 

It was necessary to develop a car-following methodology to articulate the driving 

behavior of CVs during inclement weather conditions. Car-following theories describe driver 

behavior when one vehicle follows another in a traffic stream. Car following models were first 

developed in the 1950s on the basis of two notions, stimulus and response; that is, each driver 

reacts in a particular fashion to a stimulus that leads to the event of an acceleration. A variety of 

studies have focused on applying car-following models to compare vehicle dynamics (e.g., 

velocity, acceleration) between two vehicles. In this project, car-following models were 

investigated in the literature. Therefore, a system of ODEs for the Intelligent Driver Model 

(IDM) was derived. Then we developed a framework to simulate the dynamics of the IDM for 

realistic driving scenarios in inclement weather. The IDM is widely used, as it can reach high 

desired velocities with realistic acceleration and deceleration while maintaining non-collision 

gaps for a platoon of vehicles.  

In traffic flow theory, the IDM is considered to be a microscopic traffic flow model that 

can simulate freeway and urban traffic. The model was developed by Treiber, Hennecke and 

Helbing in 2000 using observations gained from the experimental results with other “intelligent” 

driver models such as Gipps’. 

Let us consider two vehicles: i and i-1. 𝑥𝑥𝑖𝑖, 𝑥̇𝑥𝑖𝑖 denote the position and velocity of the i-th 

car, respectively. 𝑙𝑙𝑖𝑖 denotes the length of the n-th car. We define the net distance between two 

consecutive cars as follows: 

𝑆𝑆𝑖𝑖 ≔ 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖 − 𝑙𝑙𝑖𝑖−1 (10) 

The IDM assumes the acceleration behavior to be a continuous function of the speed 𝑣𝑣𝑖𝑖, 

gap 𝑠𝑠𝑖𝑖, and speed differential ∆𝑣𝑣𝑖𝑖 with the preceding vehicle (Treiber et al. 2000). Equation 11 

presents the generic form of the proposed IDM model. 
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 𝑥̈𝑥𝑖𝑖(𝑡𝑡) =  𝑎𝑎[1 −  �𝑣𝑣𝑖𝑖 (𝑡𝑡)
𝑉𝑉
�
𝛿𝛿
− �𝑆𝑆(𝑣𝑣𝑖𝑖 (𝑡𝑡),Δ𝑣𝑣𝑖𝑖(𝑡𝑡))

𝑆𝑆𝑖𝑖
�
2

] (11) 

where 

𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 = maximum comfortable acceleration;  

𝑣𝑣𝑖𝑖  (𝑡𝑡) = speed of the vehicle 𝑖𝑖; 

𝑉𝑉 = desired velocity;  

δ = acceleration exponent; 

S = actual gap between the leading vehicle i − 1 and the following vehicle i;  

Δ𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝑣𝑣𝑖𝑖(𝑡𝑡) − 𝑣𝑣𝑖𝑖−1(𝑡𝑡) is the removal rate of the vehicle i to its preceding vehicle i − 1;  

S (vi (t), ∆vi (t)) is the minimum desired gap defined by the following equation:  

𝑆𝑆�𝑣𝑣𝑖𝑖  (𝑡𝑡),Δ𝑣𝑣𝑖𝑖(𝑡𝑡)� = 𝑠𝑠0 + max [𝑇𝑇𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖 (𝑡𝑡)Δ𝑣𝑣𝑖𝑖(𝑡𝑡)
2�𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖

, 0] (12) 

where 𝑠𝑠0 is the inter-vehicular distance at standstill; T is the safe following time-headway; and 

bmax, i is the desired deceleration of the vehicle i. 

The acceleration is divided into two parts: “desired” acceleration on a free road is [1 −

 �𝑣𝑣𝑖𝑖 (𝑡𝑡)
𝑉𝑉
�
𝛿𝛿

] and braking deceleration induced by the front vehicle is �𝑆𝑆(𝑣𝑣𝑖𝑖 (𝑡𝑡),Δ𝑣𝑣𝑖𝑖(𝑡𝑡))
𝑆𝑆𝑖𝑖

�
2
. The 

acceleration on a free road decreases from the initial acceleration to zero when the subject car 

approaches the preceding car with “desired speed” 𝑥̇𝑥𝑜𝑜. 

Table 12-1 shows the estimated values of the IDM parameters that were found in the 

literature.  

Table 12-1. Values of IDM parameters 

IDM Parameter Value for Human Driven Vehicle 

Desired Speed, 𝑥̇𝑥𝑜𝑜 120 km/h 

Time Headway, T 1.5 s 

Minimum Gap, 𝑠𝑠0 2.0 m 

Acceleration, 𝑎𝑎 0.3 m/s2 

Deceleration, 𝑏𝑏 3.0 m/s2 

 

The original IDM id model considered homogenous traffic conditions in which all 

vehicles were non-CAVs. It had to be modified to address a situation in which both CAVs and 
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non CAVs co-exist in a traffic stream. For N number of cars, equation 11 can be written as 

follows: 

 

𝑥̈𝑥1(𝑡𝑡) =  𝑎𝑎[1 −  �
𝑣𝑣1 (𝑡𝑡)
𝑉𝑉

�
𝛿𝛿

− �
𝑆𝑆(𝑣𝑣1 (𝑡𝑡), Δ𝑣𝑣1(𝑡𝑡))

𝑆𝑆1
�
2

] 

𝑥̈𝑥2(𝑡𝑡) =  𝑎𝑎[1 −  �𝑣𝑣2 (𝑡𝑡)
𝑉𝑉
�
𝛿𝛿
− �𝑆𝑆(𝑣𝑣2 (𝑡𝑡),Δ𝑣𝑣2(𝑡𝑡))

𝑆𝑆2
�
2

] (13) 

𝑥̈𝑥𝑁𝑁(𝑡𝑡) =  𝑎𝑎[1 −  �
𝑣𝑣𝑁𝑁 (𝑡𝑡)
𝑉𝑉

�
𝛿𝛿

− �
𝑆𝑆(𝑣𝑣𝑁𝑁 (𝑡𝑡), Δ𝑣𝑣𝑁𝑁(𝑡𝑡))

𝑆𝑆𝑁𝑁
�
2

] 

 

where  

𝑆𝑆�𝑣𝑣𝑖𝑖  (𝑡𝑡),Δ𝑣𝑣𝑖𝑖(𝑡𝑡)� = 𝑠𝑠0 + max [𝑇𝑇𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖 (𝑡𝑡)Δ𝑣𝑣𝑖𝑖(𝑡𝑡)
2�𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖

, 0] (14) 

𝑆𝑆𝑖𝑖 ≔ 𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖 − 𝑙𝑙𝑐𝑐 

 

The parameters in table 12-2 needed to be calibrated to address CAVs in a heterogeneous 

traffic stream. The developed simulation framework provides the flexibility to set variable 

driving speed, reaction time, and time headway in the case of non-CAVs, in contrast to other 

multi-agent simulation platforms. The values for these parameters were chosen as shown in table 

12-2 (Li et al., 2017; Kesting et al., 2010): 

Table 3. Parameter values of IDM 

Parameter Value for CV Vehicle 

Desired Speed, 𝑥̇𝑥𝑜𝑜 120 km/h 

Acceleration exponent, 𝛿𝛿 1 m/s2 

Time Headway, T 0.6 s 

Minimum Gap, 𝑠𝑠0 2.0 m 

Acceleration, 𝑎𝑎 2.8 m/s2 

Deceleration, 𝑏𝑏 1.5 m/s2 

 

Because the original IDM considered a homogeneous traffic condition in which all 

vehicles were non-CAVs, the model needed to be modified to account for heterogeneous traffic 

flow in which both non- CAVs and CAVs interact with each other in the traffic stream. In this 
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study, four types of vehicle-following combinations were considered to simulate different 

scenarios of CAV/non-CAV heterogeneous traffic flow.  (1) a non-CAV following another non-

CAV, (2) a non-CAV following CAV, (3) a CAV following another non-CAV, and (4) a CAV 

following a CAV. Accordingly, the proposed heterogeneous IDM formulates the four-different 

CAV/non-CAV car-following combinations as follows  (Abdulsattar et al. 2019b): 

 

⎩
⎪
⎨

⎪
⎧ 𝑣𝑣𝚤̇𝚤(𝑡𝑡) =  𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖[1 −  �𝑣𝑣𝑖𝑖 (𝑡𝑡)

𝑉𝑉𝑖𝑖
�
𝛿𝛿
− �

𝑆𝑆𝑖𝑖
𝑅𝑅𝑡𝑡(𝑣𝑣𝑖𝑖 (𝑡𝑡),Δ𝑣𝑣𝑖𝑖(𝑡𝑡))

Δ𝑥𝑥𝑖𝑖(𝑡𝑡)−𝑙𝑙
�
2

]

𝑆𝑆𝑖𝑖
𝑅𝑅𝑡𝑡(𝑣𝑣𝑖𝑖𝑅𝑅𝑡𝑡 (𝑡𝑡),Δ𝑣𝑣𝑖𝑖𝑅𝑅𝑡𝑡(𝑡𝑡)) = 𝑠𝑠𝑖𝑖,0 + max [𝑇𝑇𝑖𝑖𝑣𝑣𝑖𝑖𝑅𝑅𝑡𝑡(𝑡𝑡) + 𝑣𝑣𝑖𝑖𝑅𝑅𝑡𝑡  (𝑡𝑡)Δ𝑣𝑣𝑖𝑖

𝑅𝑅𝑡𝑡(𝑡𝑡)
2�𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖

, 0]
 (15) 

 
where l is the leading vehicle length, and superscript 𝑅𝑅𝑡𝑡 refers to the reaction-time of the ith 

vehicle. Correspondingly, all the parameters 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖, 𝑉𝑉𝑖𝑖, 𝑅𝑅𝑡𝑡 , 𝑠𝑠𝑖𝑖,0 , 𝑇𝑇𝑖𝑖, and 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖 vary among the 

different types of vehicles. The aforementioned parameters were generated in the simulation 

framework through Monte-Carlo simulation to account for the heterogeneity in the 

characteristics of non-CAVs in the traffic stream. The features of heterogeneous and 

homogeneous traffic flow could be explained as follows: homogeneous traffic flow acts on the 

assumption that drivers are inclined to maintain zero acceleration, a fixed space headway, and 

velocity (i.e., ∆vi = 0, 𝑣𝑣𝚤̇𝚤 = 0) at the equilibrium state. However, in heterogeneous traffic flow, 

drivers tend to maintain zero acceleration as well as stable velocity while space headways vary 

among the vehicles (i.e., ha = ℎ𝑖𝑖𝑒𝑒 ), where ℎ𝑖𝑖𝑒𝑒 is the corresponding equilibrium headway of the 

vehicle I and it varies among the vehicles (Abdulsattar et al., 2019b). 

12.2.2. Lane-Changing Behavior in a Mixed Traffic Environment 

Other than car-following behavior, the other major component of vehicle behavior in the 

traffic stream is lane-changing behavior. In order to model lane-changing behavior in a 

heterogeneous traffic stream, the gap-acceptance model developed by Toledo et al. (2003) was 

considered to successfully capture lane-change behaviors with integrated target lane choice. This 

model was developed on the basis of detailed vehicle trajectory data to simulate integrated lane-

changing behavior, both mandatory and discretionary, for both CAVs and RVs. Because the 

model was developed on the basis of detailed vehicle trajectory data, it is considered an 

individual-specific latent variable, vn, that accounts for time-invariant characteristics such as 

aggressiveness, level of driving skills, and vehicle speed and acceleration capabilities. However, 
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to simulate CAVs, we considered some additional constraints to maintain traffic stability based 

on the desired following distance (Abdulsattar et al., 2019b). Equations 16 and 17 denote the 

critical lead and lag gap formulas adopted for non-CAVs. Note that when values of these 

parameters are below the critical calculated values in the developed simulation, no lane-change 

maneuver will be executed. 

𝐺𝐺𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝑇𝑇,𝑐𝑐𝑐𝑐(𝑡𝑡) = exp �1.353 − 2.7𝑚𝑚𝑚𝑚𝑚𝑚�0,∆𝑉𝑉𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝑇𝑇(𝑡𝑡)� − 0.231𝑚𝑚𝑚𝑚𝑚𝑚�0,∆𝑉𝑉𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝑇𝑇(𝑡𝑡)� −

1.27 𝑣𝑣𝑖𝑖 +∈𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑡𝑡)� (16) 

 

𝐺𝐺𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝑇𝑇,𝑐𝑐𝑐𝑐(𝑡𝑡) = exp (1.429 − 0.471 max�0,∆𝑉𝑉𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝑇𝑇(𝑡𝑡)� + 0.131 𝑣𝑣𝑖𝑖 +∈𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙 (𝑡𝑡) (17) 

 

where ∆𝑉𝑉𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝑇𝑇(𝑡𝑡) and ∆𝑉𝑉𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝑇𝑇(𝑡𝑡) are the relative speeds of the lead and lag vehicles in the 

direction of change, respectively; ∈𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (𝑡𝑡) N(0, 1.1122); and ∈𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙 (𝑡𝑡) N(0, 0.7422). This model 

was used to simulate vehicles over-passing, as discretionary lane-changing behavior, and on-

ramp merging, as mandatory lane-changing behavior, in the proposed highway scenarios. 

Because of the low reaction-time and short following time-headway of CAVs, additional logical 

constraints were added to the gap-acceptance model as described in Equations 18 and 19 

(Abdulsattar et al., 2019b).  

𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = max (𝛾𝛾ℎ0,𝑖𝑖,𝐺𝐺𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝑇𝑇,𝑐𝑐𝑐𝑐) (18) 

𝐺𝐺𝐶𝐶𝐶𝐶𝐶𝐶,𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙 = max (𝛾𝛾ℎ0,𝑖𝑖+1,𝐺𝐺𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝐿𝐿,𝑐𝑐𝑐𝑐) (19) 

where 𝛾𝛾ℎ0 is the is the critical time-headway for the ith vehicle; 𝐺𝐺𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝑇𝑇,𝑐𝑐𝑐𝑐 is the lead gap 

calculated from Equation12; 𝛾𝛾ℎ0,𝑖𝑖+1 is the critical time-headway of the i + 1 vehicle if the 

vehicle is a CAV; and 𝐺𝐺𝑖𝑖
𝑙𝑙𝑙𝑙𝑙𝑙 𝑇𝑇𝑇𝑇,𝑐𝑐𝑐𝑐 is the critical lag gap calculated from Equation 19. Given the 

gap acceptance behavior described in equations 18 and 19, CAVs will maintain the desired lane-

changing gaps required to mitigate shock-wave propagation resulting from undesired critical 

gaps that can affect traffic flow and stability. 
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13. Results and Analysis 

13.1.  Simulation Framework and Setting 

The developed methodology as outlined in Chapter 21 was implemented through a 

simulation testbed to evaluate the efficacy of CV technology during adverse weather. A 

hypothetical 1-km long roadway was considered, and a particular area (a 500- to 600-m offset 

within that stretch) was chosen to simulate inclement weather. 

 

 

 

Figure 13-1. Simulation framework to characterize CAV behavior during adverse weather 
 

In the presented scenario, a detector was placed  every mile to calculate the speed, flow, 

and density of the passing vehicles on the roadway section. The simulation framework was 

divided into three phases, as described by Abdulsattar et al. (2018and 2020). While the first 
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phase consisted of basic simulation and roadway configurations and settings in which the 

number of lanes, speed limits, and market penetration levels were defined; the second phase, 

consisted of non-CAV and CAV behavior models that included car-following and lane-changing 

behavior models, in addition to the logical constraints that simulated vehicle communication 

behavior. The third phase consisted of simulation execution, data acquisition, and results 

extraction. The simulation data were collected from 300 simulation minutes for each MP level 

with varying traffic flow rates to study the impacts of CAVs on the highway capacity of the 

hypothesized scenario. Vehicle arrival in the network followed a Poisson distribution with 

parameter 𝜆𝜆 = 720 veh/h. As a result, the vehicle headway followed a negative exponential 

distribution with 𝜇𝜇 = 5 s. 

13.2. Results 

Determining improvements in highway capacity performance associated with the 

deployment of vehicle communication technology is essential for assessing the impacts of CAVs 

on enhancing the traffic flow performance. This section describes an investigation of the impacts 

of varying MP levels on traffic during inclement weather. The numbers presented in the results are 

meant to provide quantitative insights into the potential benefits associated with deployment of 

CAVs to highway capacity, not to define threshold values that are sensitive to any possible 

variation in parameters and settings. 

This section provides detailed descriptions of the present position and velocity profiles for 

different traffic situations with a mixture of human-operated vehicles (HVs) and CVs as revealed 

by the IDM. Figure 13-2 shows synthetic vehicle trajectories for the leader car during the 

developed simulation scenario. We considered the following assumptions for the simulation: 

• During the initial 40 seconds, the leader car traveled with a constant velocity of 20 ft/s.  

• After the next 30-second interval, the velocity of the leader vehicle was set to zero; it 

again moved with a 20-ft/s constant velocity.  

• The position of the leader car was set at 200 ft ahead of the first follower car.  

• The initial headway between other follower cars was kept at 30 ft with a 0-ft/s initial 

velocity. 
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13.2.1. Trajectory Analysis 

 
(a) 0% market penetration 

 
(b) 20% market penetration 
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(c) 40% market penetration 

 
(d) 60% market penetration 
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(e) 80% market penetration 

 
(f) 100% market penetration 

Figure 13-2. Position profile of N cars (a mixture of human-operated vehicles and CAVs) 
simulated with the IDM during inclement weather 

 
The rajectories in figure 13-2 provide insights into how the CV technologies would 

facilitate less speed perturbation, leading to much smoother and safer travel. Our particular area 

of interest was how speed propagation would occur between 500 and 600 m, which was the area 

assumed to have inclement weather. With 0 percent CV market penetration, inclement weather 

resulted in shockwave propagation. As market penetration increased, improvement occurred in 
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the vehicle trajectory, leading to a more stable traffic situation (figure 13-2(b)). There was less 

perturbation in the adverse weather zones, although the shockwave zone shifted to a later stage 

along the roadway (figure 13-2(d)). Speed perturbation due to the inclement weather still 

remained. However, as the market penetration of CVs reached 60 percent, significant 

improvement was observed as vehicle trajectories became smoother and perturbation decreased 

to a minimum. 

 

13.2.2. Velocity Profile Analysis 

 
(a) 0% market penetration 
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(b) 20% market penetration 

 
(c) 40% market penetration 
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(d) 60% market penetration 

 
(e) 80% market penetration 
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(f) 100% market penetration 

Figure 13-3. Velocity profile during adverse weather for different market penetration rates 
 

The velocity profile based on the IDM formulation shown in figure 13-3 provides 

insights into how drivers interacted during the inclement weather. Results showed that for a 

scenario with a 0 percent MP rate, vehicles faced congestion as soon as the simulation time 

period reached 40 seconds. The situation improved as the MP rate increased. For example, with a 

40 percent MP rate, deceleration started after 60 seconds. Significant improvement was observed 

when the MP rate reached 60 percent, as no vehicles did not decelerate; instead information 

exchange between vehicles led to more coordinated platooning, resulting in smoother traffic 

movement. 
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13.2.3.  Fundamental Diagram Analysis 

 
(a) 0% market penetration 

 
(b) 20% market penetration 
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(c) 40% market penetration 

 
(d) 60% market penetration 
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(e) 80% market penetration 

 
(f) 100% market penetration 

Figure 13-4. Flow- density relationship for mixtures of CVs and HVs given different market 
penetration rates 

 
Figure 13-4 presents the impacts of CAVs on the flow-density relationship for MP levels 

ranging from 0 to 100 percent to shed light on potential changes in fundamental traffic 

relationships that accompany the deployment of CAVs. The simulation data presented in figure 

13-4 show that the flow-density relationship persisted in its fundamental shape, regardless of the 

MP level. Moreover, results followed the same trend seen in the literature, in which CAV 

technology had no significant impact under MP levels of 40 percent. However, there is a high 
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potential to increase the highway capacity under higher levels of market penetration. The 

interpretation is that the emergence of CAVs in the traffic network and their behavior did not 

reshape traffic flow fundamentals, but the information exchange between CAVs was essential for 

reducing the time-headway and reaction-time, and for inducing traffic stability, which were 

reflected in enhanced highway capacity.  

13.2.4. Discussion of Results 

The impacts of deploying CAVs during inclement weather with different levels of market 

penetration on fundamental traffic relationships, in terms of the flow density relationship, was 

investigated. For the presented scenarios, the CAVs demonstrated their potential to enhance the 

capacity of the highway segments. The utilization of V2V and V2I communication technology 

enabled the CAVs to produce a shorter following time-headway and to attenuate traffic 

disturbances through lower reaction-time than non-CAVs. While CAVs tended to maintain the 

speed limit of the roadway section, they tended to promote more stable traffic flow by 

implementing a fixed-time headway based on the desired distance for all CAVs. Improvement in 

capacity was associated with higher MP levels. Results showed that capacity did not improve 

below an MP level of 40 percent. These results confirm the research outcome presented by Ye 

and Yamamoto (2018). Because the short following time-headway was not utilized unless the 

following combination was CC, the benefits associated with CAVs started to surface at MP 

levels of greater than or equal to 60 percent. Eventually, at full MP levels, the results revealed by 

the developed ABMS framework showed that CAVs had the potential to increase the highway 

capacity on two-lane, undivided highways where no merging or over-passing was considered and 

on four-lane, divided highways with on-ramps where over-passing and merging maneuvers were 

considered in the model. The results agreed with results from similar studies, discussed in section 

2, in which the V2V communication technology significantly improved the highway capacity 

(Tientrakool et al., 2011); however, none of those explored studies quantified the impacts of 

CAVs on the fundamental traffic relationship during inclement weather. 
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14. CONCLUSIONS 

This project focused on the operational enhancement of highways through the 

deployment of vehicle communication technology during inclement weather. While a variety of 

studies have looked at mitigating congestion during adverse weather, a gap remains in the 

literature demonstrating how connected vehicle technologies can be applied to better manage 

traffic networks during such events. The traffic performance benefits associated with the 

emergence of vehicle communication technology, and the lack of tools to evaluate those benefits, 

were the impetus behind this project. We developed a modified IDM model to incorporate the 

effects of CVs into a mixed traffic scenario. The developed methodology was implemented into 

a simulation framework, and detailed analysis was conducted to evaluate how CVs can improve 

vehicle movement during adverse weather. The results showed that for high market penetration 

of CVs (60 percent), there was less speed perturbation along the roadway, leading to stable 

traffic movement. 
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